
Optimizing large scale omics analyses with

data management techniques

Candidate Number: 1052483

University of Oxford

A thesis presented for the degree of

Master of Science in Computer Science

Trinity 2021

August 30, 2021

I

Acknowledgements

Acknowledgments were omitted for anonymization.

II

Abstract

The use of machine learning techniques for analyzing biomedical data has seen a big

increase in recent years due to promising results and various innovations achieved.

However, the nested structure of biomedical data still remains a major issue when it

comes to translating data to a format compatible with languages prevalent in machine

learning, such as Python. In addition, the large size of data often results in executing

the processing of data using distributed techniques. This, however, brings additional

challenges for nested data. In this thesis, we extend a nested query compilation frame-

work by incorporating statistical operations in the framework, integrating User-Defined

Functions, and exploring different feature selection methods to improve the performance

of models on various tasks regarding cancer prediction.

III

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Thesis Objectives . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Multi-modal Biomedical Analyses . 5

2.2 Data Sources . 7

2.2.1 occurrences . 8

2.2.2 samples . 8

2.2.3 genemap . 8

2.2.4 clinical . 9

2.2.5 gene expression . 9

2.3 Distributed Processing Platforms . 9

2.4 TraNCE . 12

2.4.1 TraNCE overview . 12

2.4.2 Architecture . 14

2.4.3 NRC . 15

2.4.4 Example TraNCE Program . 16

2.4.5 Shredded Compilation . 17

2.4.6 Pipeline Overview . 20

2.5 UDFs . 22

2.6 Feature Selection . 23

3 Extended TraNCE 32

IV

3.1 UDF Construct and Compilation . 33

3.2 Shredding UDFs . 35

3.3 External Types . 38

3.4 UDF Optimization Hints . 42

4 UDFs with Feature Selection Filters 44

4.1 Feature-selection Based Filters Introduction 44

4.1.1 Correlation Filter . 44

4.1.2 Chi-square Filter . 46

4.1.3 Filter Implementation . 47

4.2 Feature-selection Based Hints . 48

5 Experiments 51

5.1 Experimental Setup . 52

5.2 Exploration . 54

5.3 Binary Classification: Prostate Cancer Severity 58

5.3.1 Single-omics - Mutation Impact Burden 58

5.3.2 Single-omics - Gene Expression 63

5.3.3 Multi-omics - Integrated Impact and Gene Expression 67

5.4 Multi-class Classification: Tumor Site Prediction 72

5.4.1 Multi-class . 74

5.4.2 One-vs-rest . 76

5.5 Gene Enrichment Analysis . 82

5.5.1 Prostate severity with multi-omics 82

5.5.2 One-vs-rest Tumor Site Prediction 84

6 Discussion and Future Work 88

6.1 Discussion . 88

V

6.2 Limitations and Future Work . 92

7 Conclusions 95

Appendices 105

Appendix A Feature Selection Runtimes 105

Appendix B Optimizations for Multi-omics Queries 105

Appendix C Presence of Prostate Cancer Prediction 108

Appendix D Gene Enrichment Analysis 109

VI

List of Figures

2.1 Example of a distributed representation of a user-defined application.

occurrences are cached in memory across the n worker nodes. 10

2.2 Transformation steps from raw input query string to generated code.

Each language is a set of Scala case classes and each transformation step

is an algorithm consisting of pattern matching. 14

2.3 Syntax of NRC. 15

2.4 Architecture of TraNCE showing the shredded compilation route. Spark

provides a schematic representation of the route, while the shredded

inputs of occurrences are cached in memory across worker nodes. . . . 18

2.5 Workflow diagram representing the burden-based analysis for gene path-

way and the downstream classification problem. The results of the bur-

den analysis are fed into a model of the multi-class or one-vs-rest classi-

fication method to predict tumor of origin. 21

2.6 Rank correlations between pairs of filter selection methods. The figure

is from the paper of Bommert A. et al. [36] 30

3.1 Transformation steps from raw input program to generated code using

the UDF implementation. The darker shaded boxes denote the transfor-

mations where we had to change the implementation of TraNCE. . . . 32

3.2 Outline of the steps defined in the UDFs. Data is processed initially in

Spark (darker shaded boxes) and then in python. A neural network is

then defined and trained on the extracted features. 41

5.1 Training and validation error of the model using chi-square as feature

selector method. The model uses 20000 features as its input coming

from chi-square. The graph clearly displays overfitting problems. 55

VII

5.2 Training and validation error of the model using ANOVA as feature

selector method. The model uses 20000 features as its input coming

from the ANOVA filter. The graph clearly displays overfitting problems. 55

5.3 Stacked bar plot showing the runtimes of different feature selection meth-

ods of the calculation of the single-omics mutation impact burden cal-

culation from the moment the program is executed until extracting the

features. 59

5.4 Stacked bar plot showing the runtimes of different feature selection meth-

ods of multi-omics calculation from the moment the program is executed

until extracting the features. 68

5.5 Distribution of the various cancer types 72

5.6 Stacked bar plot showing the runtimes of different feature selection meth-

ods of the multi-class experiment from the moment the program is exe-

cuted until extracting the features. 74

5.7 Multi-class classification - one-vs-rest approach. The accuracies dis-

played are the training accuracies of all binary classifiers 78

5.8 Confusion matrix of the RFE model. The cancer types are encoded as

[Colon = 0, Breast = 1, Lung = 2, Kidney = 3, Stomach = 4, Ovary =

5, Endometrial = 6, Head and Neck = 7, Central nervous system = 8] 79

5.9 Gene set enrichment analysis for overlapping RFE/ANOVA feature sets.

High-confidence associations are in dark blue. Generated by WebGestalt. 83

5.10 Represented biological processes, cellular components, and molecular

function categories for the overlapping gene set of ANOVA/RFE. Gen-

erated by WebGestalt. 84

VIII

5.11 Volcano plot for the 114 overlapping ANOVA genes used in the one-vs-

rest experiment. High-confidence associations are labeled by definition.

Generated by WebGestalt. 85

5.12 Represented biological processes, cellular components, and molecular

function categories for the 114 overlapping ANOVA genes used in one-

vs-rest. 86

D.1 Represented biological processes, cellular components, and molecular

function categories for 200 genes from RFE from the binary classification

- Prostate cancer severity task. 110

D.2 Represented biological processes, cellular components, and molecular

function categories for 148 genes identified from RFE only from the bi-

nary classification - Prostate cancer severity task. 110

IX

List of Tables

1 χ̃2 calculation example . 46

2 Severity of prostate - topk features cross validation 56

3 Binary classification - Single omics Mutation impact, all features 60

4 Binary classification - Single omics Mutation impact, chi-square

feature-selection based filter . 61

5 Binary classification - Single omics Mutation impact, correla-

tion feature-selection based filter 62

6 Binary classification - Single omics gene expression, all features 64

7 Binary classification - Single omics gene expression, chi-square

feature-selection based filter . 64

8 Binary classification - Single omics gene expression, correlation

feature-selection based filter . 65

9 Binary classification - Single omics gene expression, MultiSURF

correlation feature-selection based filter 66

10 Severity of prostate - Multi-omics correlation feature-selection

based filter . 70

11 Severity of prostate - Multi-omics chi-square feature-selection

based filter . 71

12 Multi-class classification - correlation+ partial filter 75

13 Multi-class classification - one-vs-rest - value filter 77

14 Feature selection methods runtimes 105

15 Binary classification - Prostate cancer presence prediction -

value filter . 108

X

16 Binary classification - Prostate cancer presence prediction - chi-

square feature-selection based filter 109

XI

1

List of Abbreviations

NRC . Nested Relational Calculus

TraNCE . The extended Nested Relational Calculus Framework

TCGA . The Cancer Genome Atlas

GMB . Gene Mutation Burden

UDF .User-Defined Function

RFE . Recursive Feature Elimination

ANOVA . Analysis Of Variance

GRCh37 Genome Reference Consortium Human Genome build 37

2

1 Introduction

1.1 Motivation

Biomedical statistical inference can have a huge impact on the future of medicine. While

in this thesis we will not focus on hypothesis testing and causal statistics which was

the main area of research in the last years [35, 28], we will investigate how statistical

operations when incorporated in query language compilation frameworks can help our

understanding in cancer prediction tasks. We will discuss challenges surrounding data

processing of complicated biomedical data and their analyses and present a novel query

compilation framework, TraNCE, developed by Smith J. et al. [38]. We will also

discuss the importance of UDFs in query languages and tackle the challenging task of

optimizing such functions.

In this work, we look to extend an existing nested compilation framework with User-

Defined Functions (UDFs). We use case studies from Machine Learning (ML) based

biomedical analyses to explore UDF optimizations specific to feature selection and

evaluate the optimizations with respect to both runtime and model accuracy.

1.2 Thesis Objectives

In summary, the project will focus on the following tasks:

• The extension of NRC with UDF support as a means to apply non-trivial statis-

tical operations in NRC

• The extension of the shredding transformation incorporated in TraNCE to support

UDFs

• The optimization of UDFs by enabling hints to the users

• The exploration of these extensions with respect to building feature sets and

1.3 Thesis Outline 3

combining them with multi-omics data analyses approaches and neural networks

to perform classification tasks

• The analysis of gene sets from the resulting feature outputs of models from various

experiments using gene enrichment analysis tools

1.3 Thesis Outline

In Section 2 we introduce the background material. We first talk about multi-modal

biomedical analyses and their importance in cancer-related tasks. We then introduce

various data sources we will use in the thesis and discuss data processing platforms

and the challenges associated with the parallel execution of tasks. We then introduce

TraNCE at a high-level and NRC. Finally, we introduce UDFs; their uses in query

compilation frameworks, and the challenges associated with optimizing them. Finally,

we discuss feature selection methods and present a detailed discussion for the ones we

will be using in the thesis.

In Section 3, we describe how we extended the TraNCE framework by integrating

UDFs. We describe how the UDFs were defined, their uses, a hint parameter that

helps optimize them and we go into detail about the syntax of the implementation in

TraNCE.

In Section 4, we describe how we used hints to enable the pushing of filters within

UDFs with the optimizations being specific to feature selection in ML tasks. We also

discuss the methods of two filters that were provided and integrated into the TraNCE

framework.

In Section 5 we present the experiments we considered for the binary and multi-class

classification tasks, the experimental setup, the results, and some discussion on the

results. We also talk about gene enrichment analysis and present findings on gene sets

extracted from the different models we used. In Section 6, we discuss some of the

1.3 Thesis Outline 4

limitations and findings from our experiments and recommend areas for future work,

while in Section 7 we present our final conclusions.

5

2 Background

The focus of the thesis is the biomedical analyses of cancer-related prediction tasks,

using multi-modal analyses. Our work uses a nested query compilation framework

and aims to extend it to support UDFs. In this section, we first provide details on

the biomedical application domain, paying specific attention to multi-modal analyses

in Section 2.1 and introduce the data sources we will use throughout the thesis in

Section 2.2. We then discuss distributed processing platforms in Section 2.3 and the

challenges that arise when executing complex, biomedical analyses in a distributed

setting. Furthermore, we introduce the nested query compilation framework, TraNCE,

in Section 2.4. We continue with a discussion of UDFs - what the state-of-the-art in

UDFs is, the role of UDFs in biomedicine, and in the context of processing nested

queries. Finally, in Section 2.6, we discuss feature selection methods.

2.1 Multi-modal Biomedical Analyses

Mutational burden and multi-omics cancer driver genes analysis will be the two main

tasks investigated. Mutational burden is a generic characterization of tumorous tissue,

that can be informative for cancer therapy [31, 42]. Tumor Mutational Burden (TMB)

is defined as the total number of somatic mutations present in a tumor sample, which is

one of the important measures when it comes to cancer research and treatment. Gene

Mutational Burden (GMB) is a sub-calculation of TMB that defines the total number of

somatic mutations in a gene for every tumor sample. The results of the GMB analyses

are used as features vectors for various classification and prediction problems. GMB

analyses are beneficial for prediction tasks such as predicting the tumorsite of the origin

of cancer. Furthermore, there are also other tasks related to specific types of cancer.

For example, Z. Chen et al. [25], present a study on using gene expression (see Section

2.2 for details about gene expression data source) for predicting the severity of prostate

2.1 Multi-modal Biomedical Analyses 6

cancer. TMB analysis, however, involves one data source type. Genomic sequencing,

advancements in ML techniques, and the vast amounts of medical data have resulted in

interesting ideas surfacing in the biomedical field such as integrating complex datasets.

Multi-omics or multi-modal analytics is a biological analysis approach where the data at

hand consists of multiple omics, such as the genomics, proteomics and transcriptomics.

Genomics is the interdisciplinary field of biology that focuses on the structure and

evolution of genomes, which is an organism’s complete set of DNA. Proteomics is the

large-scale study of proteins, which are vital parts of living organisms. Transcriptomics

is the study of all RNA 1 molecules in a cell. The integration of different omics datasets

has proven to be vital in understanding human health and diseases, while multi-omics

analyses have revolutionized the fields of biology in recent years [23, 13, 39, 20, 8].

The use of omics data became also famous for pathway analysis tasks. K. Ramanan et

al. [14], discuss the increasing use of genome-wide data sets for identifying biological

pathways for complex diseases, while I. Menashe et al. [10], talk about specific use of

genomes for pathway analysis for breast cancer. The integration of omics datasets helps

provide better insights to the analysis as a whole since using more data to tackle such

challenging tasks 2 is beneficial. In the thesis, we extend TMB analyses by combining

different data sources for cancer prediction tasks. Moreover, we also extend one-class

cancer prediction models to multi-class models that given a list of different cancer types,

attempt to predict the correct one.

These types of multi-omics analyses have lead to an increase in biomedical data collec-

tion. Many publically available data sources are now available for the community to

explore, such as The Cancer Genome Atlas (TCGA) [19], the 1000 Genomes Project

[21], and the UK Biobank [51]. TCGA is a landmark cancer genomic program contain-

1Ribonucleic Acid, a molecule similar to DNA that is copied from pieces of DNA and contains
information to make proteins and perform other important functions in the cell

2Such as cancer prediction

2.2 Data Sources 7

ing different omics data with the aim of improving the ability of people to diagnose and

treat cancer. 1000 Genomes is an international project containing the most detailed

catalog of human genetic variation. The UK Biobank is a large biobank in the United

Kingdom investigating contributions of genetic predisposition and environmental expo-

sure to the development of a disease. These datasets are large-scale, multi-omics, and

pan-cancer data sources that come in a variety of domain-specific formats. Pan-cancer

data sources refer to data sources containing information for multiple cancer types.

2.2 Data Sources

Nested data are data sources with attributes which are themselves nested collections of

data on various levels 3. Nested data are particularly prevalent in many domains in-

cluding biomedicine because of the complicated structure of data in the field. Relations

existing within relations are a very common phenomenon in biomedicine, especially

when dealing with gene and gene expression data sources. Gene expression is the pro-

cess by which information from a gene is used. Flat data are data sources having

all attributes of scalar type (integer, double, etc.). Somatic mutations are changes to

the DNA sequence of a somatic cell. A format common for somatic mutations is the

Mutation Annotation Format (MAF), which is a file containing the aggregated muta-

tion information from patients. MuTect is a method that applies a Bayesian classifier

to detect somatic mutations with very low allele fractions [18]. The Variant Effect

Predictor (VEP) annotates information from somatic mutations [22], returning a col-

lection of occurrences. MAF files produced from MuTect are then annotated with VEP

files to create the occurrences data source. Prad is a subset of the TCGA dataset

that contains somatic mutations of prostate cancer patients only. In addition to the

occurrences data source, we present below some other real-world data sources that

3Levels here refers to the depth of nesting

2.2 Data Sources 8

we will be using throughout the thesis, that are a subset of the multi-modal biomedical

resources used in integrated analyses.

2.2.1 occurrences

Somatic mutation occurrences, occurrences, data source is from the TCGA dataset.

We present the type of occurrences below:

{ 〈 donorId : string, contig : string, start : int, end : int, reference : string,

alternate : string, mutationId : string, candidates : { 〈gid : string,

impact : string, sift : real, poly : real, consequences : { 〈conseq : string 〉 } 〉 } 〉 }

2.2.2 samples

samples comes from the TCGA dataset. It is a data source that returns cancer samples.

For simplicity, we assume that it only returns the sample identifier, sid and an attribute

that acts as an identifier for a single biological sample taken from a patient, aliquot:

{ 〈 sid : string, aliquot : string 〉 }

2.2.3 genemap

genemap comes from the Genome Reference Consortium Human genome build 37,

(GRCh37). Reference Genomes are sequences of nucleotides that describe the set of

genes from an organism of a species. genemap is a data source that provides information

about the gene. We provide the type below:

{ 〈 contig : string, start : int, end : string, name : string, gid : string 〉 }

2.3 Distributed Processing Platforms 9

2.2.4 clinical

clinical data source comes from the TCGA dataset. It provides information about

the clinical records of a patient. We present the data type below:

{ 〈 sid : string, gender : string, race : string, ethnicity : string,

histtype : string, tumorsite : string 〉 }

2.2.5 gene expression

gene expression data source comes from the TCGA dataset. Gene expression is the

process by which the information encoded in a gene is used to assemble a protein

molecule. For example gene expression provides information on sequencing RNA.

We present the type below:

{ 〈 aliquot : string, gid : string, fpkm : real 〉 }

To give an example of nested data and the difference between flat and nested data we

consider the two data sources occurrences and samples. samples has two attributes,

and both of them return a scalar type value (string). occurrences though has an

attribute candidates which itself is a nested collection as it returns five more attributes.

The attribute consequences, has itself another attribute, called conseq. We can see

then the depth of nesting is two for occurrences.

2.3 Distributed Processing Platforms

Apache Spark [12], Apache Flink [9], and Apache Hadoop [7], are some of the dis-

tributed data processing platforms when it comes to processing large-scale data. These

platforms provide collection Application Programming Interfaces (APIs) which enable

2.3 Distributed Processing Platforms 10

Figure 2.1: Example of a distributed representation of a user-defined application.
occurrences are cached in memory across the n worker nodes.

programmers to define complex analytical tasks involving distributing resources and

data parallelism in an abstract way. Since these platforms use collection APIs they also

support nested data, however, the distribution strategies often fail to process nested

collections due to top-level distribution strategies. These distribution strategies en-

sure that all nested collections are on the same machine as their parent, which can

lead to distribution issues especially with large inner collections or few top-level tuples.

Moreover, data scientists are often faced with difficulties when translating analyses into

distributed settings. Below follows an explanation of such distributed data processing

platforms using Spark as a running example.

There is one central coordinator node while the rest of the nodes are worker nodes.

Figure 2.1 shows a simple application being executed by the Spark cluster: First, the

coordinator node receives the task and then delegates the tasks to the worker nodes in

a distributed way.

2.3 Distributed Processing Platforms 11

Spark represents distributed data using Resilient Distributed Datasets (RDDs). RDD

is an immutable distributed collection of elements of the data partition across the avail-

able nodes in the cluster, operating in parallel [15]. When flat data sources (such as

samples) are imported into the Spark cluster, they are allocated in a round-robin fash-

ion across all available partitions. If a data source is nested (such as occurrences),

the difference is that the nested attributes remain in the same partition as their parent

This is the top-level distribution strategy. Figure 2.1 displays exactly this: samples,

are stored in memory across the worker nodes distributing the top-level attributes while

keeping the nested attributes in the same location.

Many challenges surface for programmers when writing programs over distributed,

nested collections, with the most important being the bottleneck created by the (of-

ten) few top-level attributes. For example, grouping impact scores (from the clinical

example from before) represented by a small number of tumorsite tissue, results in a

distribution not exceeding the number of tumorsite tissues. This is problematic since

the full potential of the cluster is not used. Moreover, when inner collections are large,

the process of caching in and out of memory can strain the physical storage thus result-

ing in skew-related bottlenecks. Finally, when joining on nested attributes, the nested

attributes are nested within each partition that their parent attribute is allocated to

and hence cannot be accessed without iterating in the nested collections. Since the

partitions are not aware of the contents of each other, the keys cannot be referenced

outside the partitions. A näıve solution would be to copy the parent data source to

each worker node, however that is usually very computationally expensive.

One of the aims of the project is to integrate multiple complex (nested) datasets (which

are large) because of the benefits they proved to bring when approaching cancer-specific

biomedical tasks. Integrating such datasets and executing data handling procedures in

a distributed fashion is a non-trivial task. We now present a query compilation frame-

2.4 TraNCE 12

work, TraNCE that provides solutions for the above challenges.

2.4 TraNCE

In this section, we describe a nested query compilation platform, TraNCE, developed

by Smith J. et al. [38], that overcomes the challenges of processing nested data on

distributed platforms. The framework performs query compilation using a variant of

Nested Relational Calculus (NRC). This overcomes the difficulties of programming

with a distributed collection API on nested datasets. TraNCE also uses a specialized

data representation to address distribution challenges associated with nested datasets.

This section will begin with an overview of TraNCE at a high-level, introducing the

architecture and the components available for handling the complexities of distributed,

nested data transformations. In Section 2.4.4 we present an example of a program,

called GMB, and the high-level language associated with it. We then describe how

NRC is translated into a query plan and compiled into executable Spark code, known

as standard compilation. We then describe the shredded compilation route that is

optimized for handling nested data in a distributed setting in Section 2.4.5 and give a

detailed breakdown of the shredded transformation of the GMB program. In Section

2.4.6 we present a high-level overview of the pipeline of the mutational burden analyses

and how some challenges are tackled by the TraNCE framework.

2.4.1 TraNCE overview

Modern biomedical analyses are essentially pipelines of different data access mechanisms

that work on and produce datasets of varying complexity [40, 11]. Integrating such

complex datasets remains a challenging task for programmers, especially for processing

large-scale data. Advances in genomic sequencing and medical data management have

produced large-scale datasets whose integration creates many problems for existing data

processing platforms, such as Apache Hadoop, Apache Flink, and Apache Spark.

2.4 TraNCE 13

TraNCE is a compilation framework that transforms declarative programs (a method

of building the structure of programs that expresses the logic of a computation without

describing its control flow) over nested collections into distributed execution plans. The

framework can be broken down into three key aspects:

• Program compilation

• Program and data shredding

• Skew-resilience

Program compilation makes use of a high-level, declarative language allowing users to

describe programs over nested collections without burdening them with the problem of

handling nested collections in distributed settings.

The TraNCE framework provides two compilation routes: standard and shredded. The

standard compilation makes use of unnesting [4], techniques in order to apply flattening

methods to handle nested values while the shredded compilation optimizes the stan-

dard compilation by using shredding techniques. The shredding techniques transform a

program that operates on nested collections into multiple programs that operate on flat

collections [3], with the advantage being that parallelism is allowed beyond top-level

records. The output of both compilation routes is an Apache Spark program, defined

using the Scala API, that can be used in a distributed setting.

Even when dealing with flat data only, data skew can highly affect the performance of

large-scale processing of data. Data skew sometimes leads to some worker nodes having

a bigger workload than other workers leading to longer run times of programs. Nested

data aggravates this problem since inner collections might have skewed cardinalities

(an example is a join on a small number of patients having a big number of medical

records). Skew-resilience prevents such overloading of partitions thus maintaining a

better distribution of data across the worker nodes.

2.4 TraNCE 14

2.4.2 Architecture

Here we overview the TraNCE architecture and outline the steps in how TraNCE com-

piles the source language (NRC) into generated (Spark) code through a series of trans-

formation steps. The transformation steps are summarized in the flow diagram below

in Figure 2.2. The high-level language is described in more detail in Section 2.4.4. The

full syntax of the TraNCE language is provided in [37].

Figure 2.2: Transformation steps from raw input query string to generated code. Each
language is a set of Scala case classes and each transformation step is an algorithm
consisting of pattern matching.

When a source query is submitted to the program it can be compiled through a stan-

dard or shredded compilation route. The standard compilation route translates a source

NRC query into a query plan. The query plan is then optimized and passed through the

code generator to produce an executable Spark application. TraNCE provides support

2.4 TraNCE 15

to compile out to Apache Zeppelin [24] notebooks. One of the reasons why we use

Zeppelin notebooks is because they support various code interpreters. The shredded

compilation route extends the standard compilation route by providing an alternative,

more succinct representation to nested data. The output of the shredding steps (query

shredding and materialization shown in Figure 2.2 above) will then proceed with the

rest of the compilation route, translating shredded NRC into executable Spark code

that operates on this succinct representation. Section 2.4.5 describes the shredded

compilation route by example. The code can be found here [49].

2.4.3 NRC

NRC is a declarative database query language that is an extension to relational cal-

culus and is more suitable for relational models dealing with nested-structured data

and thereby nested queries [12, 2]. The syntax of NRC that is used in the TraNCE

framework is given below in Figure 2.3.

P ::= (var⇐ e)∗

e ::= ∅Bag (F) | {e } | get(e)

| c | var | e.a | 〈a1 := e, . . . , an := e 〉
| for var in e union e | e] e

| let var := e in e | e PrimOp e

| if cond then e | dedup(e)

| groupBykey(e) | sumByvaluekey (e)

cond ::= e RelOp e | ¬cond | cond BoolOp cond

T ::= S | C
C ::= Bag (F) – Collection Type

F ::= 〈a1 : T, . . . , an : T 〉 | S – Flat Type

S ::= int | real | string | bool | date – Scalar Type

Figure 2.3: Syntax of NRC.

2.4 TraNCE 16

We now explain the grammar of the NRC syntax from Figure 2.3 in some detail.

P denotes a program, which is a sequence of assignments of variables, var, where

each variable is an expression, e. Aggregation and deduplication are enabled through

the expression language, thus extending the standard NRC. The standard NRC types

constitute of the basic scalar types (e.g. integer and string types), tuple types, <a1:T1

. . . an:Tn> and bag type, Bag, T . In the version of NRC used by TraNCE, the contents

of the bag type are restricted to be a tuple or scalar type.

RelOp denotes the comparison operator on scalar type variables (e.g. <,>), PrimOp

denotes a primitive function on scalars (e.g. −, ∗) and BoolOp denotes a boolean

operator (e.g. ||, &&). Variables can be free or part of a for or let constructs. e

returns a singleton bag from an expression, and get(e) takes as input a singleton bag

and returns its only element; in the case where e is empty (or has more than one element)

a default value is returned. ∅Bag(F) simply returns the empty bag. dedup(e) takes as

input a bag e and returns a bag with the same elements, but with all multiplicities

(number of occurrences of each elements) being one. groupBykey(e) groups the tuples

of bag e using a collection of attributes key, and for each distinct key it produces a bag

named GROUP that contains the projected tuples from e with the key value. sumByvaluekey (e)

first groups the tuples of bag e by the values of their key attributes whereas for each distinct

value of key it sums up the attributes value of the tuples with the key value.

2.4.4 Example TraNCE Program

We provide a walk-through of the high-level language using an example program that we call

GMB:

GMB ⇐ for g in genemap union

{〈 gene := g.name, burdens := sumByburdensid (

for o in occurrences union

for t in o.consequences union

if g.gid == t.gid then

{〈 sid := o.sid, burden :=
(if (t.impact = "HIGH") then 0.80

2.4 TraNCE 17

else if (t.impact = "MODERATE") then 0.50

else if (t.impact = "LOW") then 0.30

else 0.01) 〉}) 〉}

TraNCE has the advantage of returning results with nested output type while abstracting the

complexities of nested distribution of data from the user. Considering the GMB program, the

⇐ operator requests specific attributes from the genemap data source. The program iterates

then over the top-level of genemap keeping the gene attribute. It then creates a nested burden

collection using the sumBy burden
sid (e) function. sumBy can be applied at a specified level given

that the input e is not a nested collection itself. The sumBy function is applied on the top-level

of occurrences with sid as the key and burden as the value and since all attributes are of

scalar type the input (equivalent to e) has a flat type:

{ 〈 sid : string, burden : real 〉 }

Inside sumBy, first the occurrences data source is introduced, then the program iterates over

the consequences attribute of occurrences and the nested burden collection is created only

on the common id attributes of the two datasources. Finally, the iteration preserves only the

sid and impact attributes. The final output of the program is then:

{ 〈 name : string, burdens : { 〈sid : string, burden : real 〉 } 〉 }

2.4.5 Shredded Compilation

As mentioned earlier, we will focus on the shredded compilation. Details about the standard

compilation can be found here [37]. The advantage of using the shredded pipeline is that

scalability of processing data is ensured. To see this, we outline the breakdown of the shredded

compilation.

The first phase of the shredded compilation route is program shredding. First, programs are

transformed using the shredded transformation which transforms programs working on nested

data into a set of programs operating on flat data, called shredded programs. The inputs

are hence expected to be flat relations, called shredded inputs. Attributes of both shredded

2.4 TraNCE 18

inputs and programs that correspond to nested collections are referenced using labels. Labels

reassociate the levels of the shredded inputs. The program shredded representation consists

of data sources of type Top, for the top-level source, type Dict attribute 1, for the first-level

source, Dict attribute 1 attribute 2 for the second-level source and so on.

The second phase of the shredding algorithm is materialization. Materialization translates

the symbolic representation to the shredded program. The symbolic representation is defined

on output dictionaries and is a partial function translating labels to bags. The framework

uses an intermediate query language, NRCLbl+λ that extends NRC with a new atomic type

for labels and a function type for dictionaries. We present below in Figure 2.4 an overview

of the shredded compilation, while a high-level overview of the materialization algorithm can

be found in the original paper [38].

Figure 2.4: Architecture of TraNCE showing the shredded compilation route. Spark
provides a schematic representation of the route, while the shredded inputs of
occurrences are cached in memory across worker nodes.

2.4 TraNCE 19

The shredded compilation provides a succinct representation of data - this representation

replaces lower and upper-level attributes with labels. Shuffling is a process of redistributing

data across partitions. Data shuffling in combination with the succinct representation results

in a reduced data transfer thus providing support for local operations (operations directly

applied in the program). We provide an example of the shredding procedure below.

Consider the data source occurrences from Section 2.2. The shredded representation of

occurrences consists of three data sources:

• A top-level source, occurrences top which returns data with a flat type:

{ 〈 sid : string, contig : string, start : int, end : int,

reference : string, alternate : string,

mutationId : string, candidates : Label 〉 },

• The first-level data source, denoted by occurrences Dict candidates that is of flat

datatype and extends the type candidates with a label attribute of type Label :

{ 〈 label : Label, gene : string, impact : real,

sift : real, poly : real, consequences : Label 〉 },

• The second-level data source that extends the type of consequences with a label at-

tribute of type Label, denoted by occurrences Dict candidates consequences:

{ 〈 label : Label, conseq : string 〉 }.

The labels could also be conceptualised as foreign-key dependencies. The consequences at-

tribute in occurrences top is a foreign key that references the primary key of

occurrences candidates, label.

We now provide an example of the shredded compilation route using the program defined in

Section 2.4.4, GMB. The shredding transformation returns two programs, where together they

represent the shredded GMB program. The first program represents the top-level collection,

2.4 TraNCE 20

namely GMB top depicted below:

GMB top ⇐ for g in genemap top union

{〈 gene := g.name, burdens := NewLabel(〈 gene := g.name〉) 〉}

The type of GMB top is:

{ 〈 gene : string, burdens : Label 〉 }.

We can see that there are no nested collection attributes, and that this is a flat collection.

Also, the label attribute of burdens holds only the necessary information to reconstruct the

nested output. The program GMB burdens Dict represents the succinct representation of the

first-level expression, shown below:

GMB burdens Dict ⇐ sumByburdensid (

for o in occurrences union

for t in o.consequences union

if g.gid == t.gid then

{〈label := NewLabel({〈 gid := t.gid}〉 , sample := o.sid, burden :=
(if (t.impact = "HIGH") then 0.80

else if (t.impact = "MODERATE") then 0.50

else if (t.impact = "LOW") then 0.30

else 0.01) 〉} 〉})

2.4.6 Pipeline Overview

Returning back to the mutational burden calculation in the TraNCE framework prior to our

work, we present in Figure 2.5 below the workflow of the burden-based analysis.

2.4 TraNCE 21

Figure 2.5: Workflow diagram representing the burden-based analysis for gene pathway
and the downstream classification problem. The results of the burden analysis are fed
into a model of the multi-class or one-vs-rest classification method to predict tumor of
origin.

Initially, an NRC program (for this example, the GMB program defined in Section 2.4.4) is

defined. The fact that the initial program defined in NRC is extended through the TraNCE

framework (since TraNCE supports the transformation of declarative programs) to nested

collections and then into plans for execution in a distributed setting, helps tackle the challenges

associated with distributed computing defined in Section 2.3. In particular, it eases the burden

for programmers to optimize aggregations (such as pushing joins to avoid the bottleneck

created by instances of queries with few top-level attributes) as this process is automated

via the TraNCE framework. The shredded transformation in distributed settings is also very

important in overcoming the challenges discussed earlier. First, the shredded representation

of program inputs enables full parallel processing of large nested collections of data and

avoids data skew by evenly distributing data across worker nodes. Second, shredding saves

computational cost as it is data-efficient - it eliminates the need of reconstructing intermediate

2.5 UDFs 22

nested results. While TraNCE enables distributed computing and tackles data skew problems,

there are still additional aspects of this pipeline that require the use of external statistical

libraries as we can see in Figure 2.5 above. The usual workflow of relational databases involves

queries/programs defined in the query language and then external functions, called UDFs, that

handle downstream training - we introduce UDFs below.

2.5 UDFs

In this section, we will discuss the concept of User-Defined Functions (UDFs). The second part

of the pipeline in the previous section, Figure 2.5 focuses on performing classification analysis

on the feature vectors constructed from an upstream TraNCE program. During this stage,

the output of the query is transformed into a Pandas Dataframe, with the transformation

being done in external libraries. We denote this as a UDF and use this as a motivating

example throughout the rest of this thesis. We now provide an overview of what UDFs are,

including the complexities they introduce in the optimization of declarative queries, such as

those defined in NRC.

UDFs are functions that define data transformations that can be used in data analysis but

cannot be expressed in the query language. With the size and complexity of data rising in

recent years, understanding such functions becomes an ever more challenging task. Analyses

of complex data are usually described as dataflows in declarative dataflow languages [26].

To achieve scalability for such analyses, the most practical way is to use UDFs to perform

various tasks, such as classification or clustering, instead of optimizing the declarative language

programs directly. This, however, has as a downside that UDFs end up being “black-boxes”

with the user being unable to either optimize or analyze the UDFs. In the context of dataflows,

some researchers have presented a way of turning UDFs into “grey-boxes” by exploiting their

semantic properties with the help of user annotations [16]. UDFs in the context of biomedicine

might range from programs for non-parametric fitting of such functions to plot results from

experimental data, to online tools to be used in a transparent way by the user as part of

a database query [1, 5]. In the thesis, since TraNCE does not currently support UDFs, we

2.6 Feature Selection 23

will first define UDFs for particular tasks and implement them in the framework for a more

efficient and streamlined end-to-end analysis. Moreover, we will provide user hints to explore

how we can apply optimizations. UDFs being “black-boxes” in the TraNCE framework means

that the framework has no control over them and that they will be defined externally (outside

the framework). In our work, even though UDFs will still remain “black boxes” outside the

query language, we explore how we can apply optimizations.

As an example, consider an NRC program (such as the one in Section 2.4.4). The output

of the program will be used to build the feature vector and this happens within TraNCE.

However, consider a simple UDF defined to train a model (a neural network for example)

- myudf(dataset, features, cancertype). The user can input which dataset to use, which

features to input to the model, and which cancer type to predict. Even if myudf is implemented

in TraNCE, it still remains an external function that cannot be controlled by the framework.

What we will investigate is how we can push optimizations in the framework by defining hints

for the user and therefore how to use the UDFs internally within the framework.

We now introduce and describe a common UDF in biomedical classification problems, the

concept of feature selection.

2.6 Feature Selection

Feature selection is a very important concept related to biomedical data mining, and in partic-

ular when dealing with omics data. Due to the complex structure of omics data, it is common

for datasets to lie in very high dimensional spaces. This means that the dataset contains a

large number of attributes, and this creates problems of overfitting when those attributes are

used as predictors in classification tasks. Overfitting occurs when a model learns noise details

in the training data hindering the ability of the model to perform well when seeing new data

(the test data), especially in cases where the amount of data is not sufficient (while there

is not an accepted threshold on what “not sufficient” means, the general consensus across

papers is that the number of data points should roughly be 10 times more than the number

of features [17, 6]). Hence, the need of reducing the input features when performing classi-

2.6 Feature Selection 24

fication/supervised learning tasks becomes very significant and necessary. As we will see in

the Experiments Section, 5.3.1, where the output number of features was around 55 000, such

tasks require a huge amount of data available if we do not perform feature selection, deeming

feature selection necessary.

In particular, there are filter, wrapper, and embedded methods. Filter methods use a specific

metric to identify irrelevant attributes. This metric could be a correlation metric (such as

Pearson’s correlation), chi-square values, and so on. After identifying irrelevant attributes,

redundant columns (i.e. features) are filtered out. Scores for each feature are calculated using

the determined metric. Then, the k 4 selected features with the highest scores are chosen

(where k is determined by the user) or all the features whose score exceed a user-determined

threshold, τ 5. Wrapper methods consider subsets of the set of all the features and for each

subset, they fit a supervised model, such as a random forest or a decision tree. The subsets

are then evaluated by a performance metric (usually classification accuracy but is dependent

on the task) calculated from the resulting model. Embedded methods try to combine the qual-

ities of both previous methods by using an implementation of algorithms that have their own

built-in feature selection methods (some examples include LASSO and RIDGE regression).

In the thesis, we will focus on filter and wrapper methods. Due to the fact that wrapper

methods use a predictive model to score a feature subset and each subset is used to train a

model, it is expected that they will provide the best performing feature set compared to filter

methods. However, this comes with a very heavy computational cost. Filter methods are

usually less computationally expensive than wrapper methods, however, they often end up

with sub-optimal feature sets. This is because the feature set is not tuned to a specific type of

predictive model, and is hence more general than the resulting set of wrapper methods. It is

therefore of interest to determine the size of the feature set at which the computational cost

of wrapper methods becomes too large for them to be used within an acceptable time frame

(although there is no precise definition of what “acceptable” is, we will discuss in next sections

4k ∈ N
5τ ∈ R

2.6 Feature Selection 25

how we defined it). Below, we explain in detail how the feature methods we considered work.

FILTER METHODS:

ANOVA

Analysis Of Variance (ANOVA) is a filter feature selection method that uses the concept of

variance. The intuition behind ANOVA can be explained using a simple example. Suppose

that we have two classes (the labels, or what we want to predict) and two features, x and y,

and we want to end up with a score that represents “how well does this feature discriminate

between the two classes”. If a feature is to be a better separator of the classes, a good metric

to use is whether the distance between the mean of class distribution of x is more than y.

This procedure can be formalized in the summary below:

• Find the mean from all observations, x̄

• Find the mean of all features individually

• Calculate the numerator of the statistic, F :

numerator = nfeature1(x̄feature1 - x̄)2 + nfeature2(x̄feature2 - x̄)2 + ...

... + nfeaturek(x̄featurek - x̄)2

• Calculate the denominator of F, concept similar to the sample variance:

denominator =

1

(nfeature1 − 1) + ...+ (nfeaturek − 1)

k∑
n=1

(xi − x̄feature1)2 + ...+ (xk − x̄featurek)2

• We then calculate the F , F = numerator
denominator . F here represents the F-statistic, which

calculates the ratio between explainable and unexplainable variance. The higher the

score the better discrimination between the classes we want to predict and hence when

performing ANOVA we can keep the features with the highest scores. Thus, if we want

to select between x or y, we choose the one with the bigger F score.

2.6 Feature Selection 26

Chi-square:

A chi-square test is used to test the independence of two events. In prediction tasks, where we

want to determine the relationship between the independent feature category (the predictor)

and the dependent feature category (label, what we want to predict), ideally, we want to have

features that are highly dependent on the response. In summary, the calculation of the χ2

statistic is as follows:

• Perform a dot product between feature and the response (response should be binarised,

i.e. be either 0 or 1)

• Sum over the feature values and calculates class frequency

• Calculate the dot product and gets the expected and observed matrices, (Ok and Ek

respectively)

• Calculate the χ2 value based on the equation:

χ2 =
1

d

n∑
k=1

(Ok − Ek)2

Ek

• Define the hypothesis of the test. The null 6 hypothesis is usually that the two variables,

(feature and response) are independent and the alternate 7 hypothesis is that they are

not independent.

• Compare the χ2 obtained from the feature using the χ2 distribution test (with degrees

of freedom being equal to the number of class - 1) to find the p-value

Large χ2 values (and hence small p-values) indicate that the hypothesis that the two cate-

gories (feature and response) are independent is incorrect. In other words, the higher the χ2

value the more dependent the feature is on the response and so can be selected as a feature

6The hypothesis that there is no significant difference between the two specified variables, and that
any difference we observe is due to sampling or experimental error

7The hypothesis stating that something else is happening, usually the negation of the null hypoth-
esis.

2.6 Feature Selection 27

to train the model.

Mutual Information:

Mutual information (MI) between two random variables is a non-negative value, which mea-

sures the dependency between the variables [27]. It is equal to zero if and only if the two

random variables are independent, and higher values imply higher dependency. The function

relies on nonparametric methods based on entropy estimation from k-nearest neighbors dis-

tances. The MI of variables X and Y for example, I(X,Y) is given by:

I(X;Y) =

∫
X

∫
Y
p(x, y)log

p(x, y)

p(x)p(y)
dx dy

p(x,y) represents the joint probability density function of X and Y, where p(x) and p(y) repre-

sent the marginal density functions of X and Y respectively. MI determines how similar p(x,y)

is with the product of the logarithm of the marginal distributions. If X and Y are independent,

hence unrelated, then p(x,y) is equal to p(x)p(y) and so the logarithm of p(x,y)
p(x)p(y) would be

equal to 0. We therefore want to keep features to be passed for training that maximize the MI.

MultiSURF:

The algorithm MultiSURF is based on the paper by R. Urbanowicz et al. [29]. The algorithm

is based on Relief-based feature selection methods, referred to as Relief-Based Algorithms

(RBAs). RBAs are some of the few filter methods that can capture feature interactions,

and specifically gene-gene interactions owing to the use of the “nearest neighbor instances”

approach. A difference between RBAs and the other feature selection methods considered

in the thesis is that they do not eliminate feature redundancies, i.e. uncorrelated features.

Algorithm 1 below shows how MultiSURF operates.

In Algorithm 1, diff returns 0 if the value of of the instances is the same, and 1 otherwise,

2.6 Feature Selection 28

Algorithm 1: Pseudo-code for the MultiSURF algorithm

n← number of training instances;
a← number of attributes (features) k ← number of nearest hits, ’H’ and
misses ’M’

STAGE 1
pre-process dataset
STAGE 2
pre-compute distance between all pairs
for i:=1 to n do

set Ti to mean distances between instance i and all others
set σi to standard deviation of those distances

end
STAGE 3
initialize all feature weights, W[A] := 0.0
for i:= 1 to n do

IDENTIFY NEIGHBORS
initialise hit and miss counters h:= 0.0 and m:= 0.0
for j:=1 to n do

if distance between i and j is < Ti - σ/2 (using distance array) then
if j is a hit then

h += 1
else

m+=1
end

end

end
FEATURE WEIGHT UPDATE
for all hits and misses do

for A:= to a do
W[A]:= W[A] - diff(A,Ri,H)/(n.k) + diff(A,Ri,M)/(n.k)

end

end

end
return vector W of feature scores that estimate the quality of features

2.6 Feature Selection 29

while for triples it returns:

diff(A,I1,I2) = value(A,I1)−value(A,I2)
max(A)−min(A)

Hits refer to neighbors having the correct label (that we want to predict), and misses to

neighbors having the wrong labels. For more details on the MultiSURF algorithm, we refer

the reader to the original paper [29].

WRAPPER METHODS

Recursive Feature Elimination:

Recursive Feature Elimination (RFE) is a wrapper-style feature selection method that also

uses filter-based feature selection techniques internally. Given an external estimator that

assigns weights to features (e.g. random forest) the goal of RFE is to select features by

recursively considering smaller and smaller subsets of features. First, the estimator is trained

on the initial set of features and the importance of each feature is obtained. The importance

of each feature is closely related to concepts of collinearity and dependencies that might

exist in the model. The “least important” features are then removed from the current set of

features. This procedure is then recursively repeated on the smaller set (with the unimportant

features removed) until the desired number of features to select (from the input of the user)

is eventually reached.

The works of Bommert A. et al. provide useful insights into feature selection methods [36].

While their work focuses on benchmarking different filter methods both in terms of model

performance 8 and runtime of filtering, they provide useful insights on the correlation between

the different feature selection methods. In particular, they assess the similarity of the filter

methods by comparing the order in which they select features for various datasets. They

then compute the rank correlation between the orders of all pairs of the filter methods they

consider and each dataset. The results in Figure 2.6 below denote the average correlation

from all datasets based on the arithmetic mean.

8Classification accuracy

2.6 Feature Selection 30

Figure 2.6: Rank correlations between pairs of filter selection methods. The figure is
from the paper of Bommert A. et al. [36]

We can see that the chi-square (chi.squared above), ANOVA (anova.test) and MI (JMI) have

relatively low similarity between them. This further supports our choice of the aforemen-

tioned feature selection methods. Since the methods do not have a high correlation between

them, they approach the task from a different angle and will potentially have more interesting

results to compare.

From the feature selection methods discussed, chi-square was the only one previously used

with the TraNCE framework. One of the aims of the project was to investigate more feature

selection methods, both wrapper and filter style, and evaluate their performance, focusing

both on accuracy and computational cost. As discussed earlier, one of the main challenges

2.6 Feature Selection 31

of wrapper-style feature selections is the very costly computational time. As we will see later

in Section 5.3.1, the feature space is very large, hindering the use of wrapper-type feature

selections, and in extreme cases the use of filter-type methods.

We have identified the aforementioned problems, and will now discuss our approaches to them.

We focus on how we can optimize UDFs that use feature selection while simultaneously im-

proving the feature selection methods as well as downstream model quality. In the example

GMB pipeline (2.5), the challenge of the large feature space still remains. The challenge of the

large dimensionality of the feature space is discussed in Section 3. While there is no restric-

tion in which external library is to be used to transform the Spark Dataframe outputted by

TraNCE, in the thesis we will focus on using Python. A detailed discussion on the multi-class

neural network and the one-vs-rest networks for classification can be found in Sections 5.4.1

and 5.4.2.

Section summary:

In this section, we discussed challenges associated with biomedical data such as the distributed

processing of nested data. We then introduced TraNCE at a high-level, a nested query com-

pilation framework that overcomes such challenges, and then introduced UDFs. We then

presented different feature selection methods we will use in this thesis and how the curse of

dimensionality is a big issue when it comes to biomedical data. We also noted how signifi-

cant UDFs are as they support external libraries for downstream analysis, including processes

such as feature selection. Moreover, due to the black-box nature of UDFs, we also noted how

challenging it is to optimize them. As discussed, currently TraNCE does not support UDFs.

In the next section, we discuss how we extended TraNCE to support UDFs at a high-level,

and how we integrated feature selection methods with UDFs. After our extensions, the fea-

ture selection optimization methods could be used not only in external libraries but within

TraNCE as well.

32

3 Extended TraNCE

In this section, we describe how we extended the TraNCE framework. We outline in detail the

integration of UDFs in the framework and discuss some of the UDFs that were implemented.

As mentioned in Section 2.5, currently TraNCE does not support UDFs. One of the aims of

the thesis was to extend NRC and the TraNCE framework to work with UDFs and integrate

them into the framework. We recall the architecture of TraNCE’s execution of a program

prior to our work in Figure 2.2. In the figure below, we present the transformation steps of

the same program execution after we extend TraNCE with UDFs.

Figure 3.1: Transformation steps from raw input program to generated code using the
UDF implementation. The darker shaded boxes denote the transformations where we
had to change the implementation of TraNCE.

We note that for both standard and shredded compilations, UDF-handling happens at all the

transformation steps, denoted by (UDF). The darker shaded boxes denote stages at which

significant additions in the framework had to be made. Additions included component ex-

tensions (algorithmic extensions), changes in the optimizer, and so on. In the subsections

that follow, we break down how we integrated UDFs in the TraNCE framework and how we

optimized them with a hint optimization.

3.1 UDF Construct and Compilation 33

3.1 UDF Construct and Compilation

The first task was to define the input syntax for a user to define a UDF. We add an additional

expression to the NRC source language presented in 2.4.3. Specifically, udfnameparams(e) where

name corresponds to the function name as defined by the user, params to the list of arguments

that the user can pass to the function, and e to an NRC expression that acts as input to the

UDF. Note that e must conform to the type system of the source language. The output type

is an implicit parameter that is provided by the user and also complies with the same type

system of the input.

For the Scala implementation in the TraNCE source code, we first define a UDF trait that

summarized a generic UDF expression in the TraNCE source language. The source code is as

follows:

trait Udf {

// the name of the UDF

def name: String

// the input expression to the UDF

def in: Expr

// the output type of the UDF

def tp: Type

// additional parameters passed to the UDF

def params: List[String]

}

We then extend various Expression types that are defined in the TraNCE framework and

ensure strong typing in the language. For example, NumericUDF extended NumericExpr,

PrimitiveUDF extended PrimitiveExpr and so on. The NumericUDF for example outputs a

Numeric type result, PrimitiveUDF a Primitive type result etc. We then move through the

list of transformations displayed in Figure 2.2, handling the relevant transformations on a

UDF throughout the course of the compilation pipeline. For the standard compilation route,

the handling of a UDF is straightforward: the UDF is passed through at each transforma-

3.1 UDF Construct and Compilation 34

tion step. At the code generation process, the UDF is translated into the respective function

call. The definition of any UDFs used in the NRC program must exist in the UDF registry

which provides the output type of the UDF and a corresponding .udf file containing the UDF

source code. The code generation process keeps track of the UDFs that are referenced in the

input program and their definition is encapsulated in the generated Spark application. We

now provide two simple examples of UDFs for clarity, one of primitive type and one of bag

type. First, consider a function exampleudf that appends a string to a specific column in the

samples dataset. The user will first register the UDF for use in the framework, defining the

output type as String and providing the definition in a file exampleudf.udf. This is a file

containing a function defined in the Spark/Scala API as follows:

def exampleudf(input: Column, add: String): Column = concat(x, lit(add))

Once registered, the function can then be used in a TraNCE program. For example, a user

can append the string “ID” to each of the bcr patient uuid attributes in the samples dataset:

AppendData <= For s in samples union

{(sid := exampleudf(s.bcr_patient_uuid, "ID"))}

Recall that the unnesting transformation translates source NRC to a form (plan language,

Spark code) that is designed for execution in bulk. This means the definition of the UDF

will follow the bulk execution strategy of the TraNCE plan language. However, the user

applies the function in NRC as a String ⇒ String transformation. This UDF NRC expres-

sion will be passed through the stages of the compilation route and eventually, the contents

of example.udf and the corresponding function call as defined by the execution plan are

written out to the Spark/Scala application in code generation. Now consider another UDF,

occurIdentity, that performs the identity function on the occurrences dataset and thus re-

turns a bag type. This UDF is registered to the system, providing the output type as the

type of occurrences as well as the corresponding file definition in Spark/Scala. This is a file,

occurIdentity.udf, that exists in the registry as:

3.2 Shredding UDFs 35

def occurIdentity(input: Dataset[Occurrence]): Dataset[Occurrence] =

input

OccurIdent <= occurIdentity(occurrences)

This function call merely gets passed through the whole standard compilation route, eventu-

ally generating the necessary code to perform the identity function call in Spark. However,

when the users choose to run the above program using the shredded compilation route, the

transformation becomes more involved.

3.2 Shredding UDFs

The most challenging task was to handle the UDF case in the shredding transformation step.

Recall that there are two components to address in the shredded compilation route: the

shredding and materialization algorithms. The shredding algorithm takes a source NRC and

produces a symbolic expression. This symbolic expression is then passed to the materialization

algorithm to produce the set of flat expressions corresponding to the shredded query. So now,

we need to understand what it means to shred a UDF. If the goal of query shredding is to

produce a set of flat queries that operate on flat inputs, then the goal of shredding a UDF is to

produce a set of UDFs with flat output types that operate on a set of flat inputs. The shredded

UDF thus consists of a collection of UDFs that each has a flat output type. Moreover, each

UDF within the shredded UDF collection will accept the set of shredded inputs as input.

For each UDF U , the shredding algorithm will expect an expression Uflat and UDict of the

appropriate type to insert in recursive calls. For primitive types, this is simple; the UDF is just

a flat component of the primitive UDF with a corresponding empty dictionary type. For bag

types, this is a bit more complicated. Since we cannot analyze the structure of U within the

compiler, these functions need to be supplied by the user. Because the user can not provide

symbolic expressions in the symbolic shredding phase, Uflat and UDict are left as stubs. This

stub is provided as an extended dictionary type that takes the symbolic representation of the

shredded input, any additional parameters specifically passed by the user, and the shredded

output type:

trait ShredUdf {

3.2 Shredding UDFs 36

// the name of the UDF

def name: String

// the flat input expression to the UDF

def flat: Expr

// the dict input expression to the UDF

def dict: DictExpr

// the output type of the UDF

def tp: Type

// additional parameters passed to the UDF

def params: List[String]

}

Thus, the stub is a dictionary type that is able to pass the additional metadata of a UDF

through to the materialization phase. At the materialization stage, we use the shredded

output type to produce the set of materialized UDFs of flat output type expected from the

materialization algorithm. In materialization, functions that provide materialization of the

top-level and the flat component of each level of UDict need to be provided by the user. We

now present the output of the shredding transformation on the occurIdentity function. In

this running example, the stub would be:

ShredUdf(

def name: String = "occurIdentity"

def flat: Expr = occurrences_Flat

def dict: DictExpr = occurrences_Dict

// shredded output type

def tp: Type = dictTp(occurIdentity.tp)

// additional parameters passed to the UDF

def params: List[String] = Nil

)

This is then passed to the materialization phase. Since there is a top-level and two nested

3.2 Shredding UDFs 37

collections in the type of occurrences, the final, materialized, output of the shredding trans-

formation will have three expressions. For the running example, the materialized dictionaries

for each level would then be as follows:

// output type matches the flat type of Top_occurrences

occurIdentity_Top(Top_occurrences, occurrences_Dict_1,

occurrences_Dict_2)

// output type matches the flat type of Dict_occurrences_1

occurIdentity_Dict_1(Top_occurrences, occurrences_Dict_1,

occurrences_Dict_2)

// output type matches the flat type of Dict_occurrences_2

occurIdentity_Dict_2(Top_occurrences, occurrences_Dict_1,

occurrences_Dict_2)

The UDF registry does not require any additional type information or a shredded UDF, since

this is handled in the shredding transformation. However, to activate shredding support for a

UDF the user must provide the set of shredded functions expected by the output type. This

means that the system expects three files, one for each level of the output type, which follows

the output of materialization. The function definitions in Spark/Scala for each UDF in the

shredded UDF collection for occurIdentity are below. Recall that this function will return

the identity, so the contents of the function just return the shredded input for that level:

def Top_occurIdentity(top: Dataset[OT], first: Dataset[OD1], second:

Dataset[OD2]): Dataset[OT] = top

def Dict_occurIdentity_1(top: Dataset[OT], first: Dataset[OD1], second:

Dataset[OD2]): Dataset[OD1] = first

def Dict_occurIdentity_2(top: Dataset[OT], first: Dataset[OD1], second:

Dataset[OD2]): Dataset[OD2] = second

where OT is the case class corresponding to the flat type of Top occurrences, OD1 is the

case class corresponding to the flat type of Dict occurrences 1, and OD2 is the case class

corresponding to the flat type of Dict occurrences 2. After the shredding transformation,

the compilation route proceeds as in the standard route, following through to code generation

where the shredded definitions and corresponding function calls are applied in the Spark

3.3 External Types 38

application.

3.3 External Types

In this section, we describe the extensions required to support externally-typed UDFs. We

have so far only talked about types that are native to NRC and therefore translated into

the corresponding Scala types. We call these internally-typed UDFs. However, as we have

discussed in the background section, UDFs are commonly defined in languages that are more

common to data science workflows, such as Python.

Recall the GMB classification analysis outlined in Figure 2.5. The lower portion of the pipeline

is done completely in Python, and moving from a Spark Dataset TraNCE output type to a

Pandas Dataframe requires context switching. Context switching is a feature provided in note-

book frameworks that allows passing data representations between code interpreters - such as

Scala to Python. To support this we allow users to register a UDF with an external type, which

is treated as a catch-all for types outside of TraNCE. Each programming-language specific ex-

ternal type is provided as an extension as ExternalType within the TraNCE framework, for

example PythonType extends ExternalType. We also provide native internal-to-external

UDFs that allow a user to cast an external type back to an internal-type, in order to use the

output of the function in any downstream NRC expression.

An externally-typed function can be added to the UDF registry in the same way as an

internally-typed UDF. When an externally-typed UDF is registered, the function definition

(in the .udf file) is provided in the desired language, such as Python. We extend the code

generation process to keep track of the externally-typed UDFs that are referenced in the input

query. Since the code generation process targets Spark/Scala directly, we need to ensure that

an externally-typed UDF is not called within the main body of the generated application.

We do need to ensure that the input types to the internally-typed UDF are accessible to

the other contexts. We use the context switching capabilities of Apache Zeppelin notebooks

to register the materialized input of the internally-typed UDF as a temporary table using

createOrReplaceTempView, which creates a multi-context view of a Spark/Scala Dataset.

3.3 External Types 39

This means that if externally-typed UDFs are used, the user must compile them to a Zeppelin

notebook. All internally-typed UDFs are written out to paragraphs in the Zeppelin notebook

- denoted with the interpreter associated to their specific type, i.e. %spark.pyspark. The

function is called under the definition of the function in the interpreter-specific paragraph.

The user is responsible for accessing the temporary views of the appropriate inputs within

their function definition.

We will now walk through an example of an externally-typed UDF using the GMB classifica-

tion analysis as an example, summarized in Figure 2.5. The following is the TraNCE program

associated to this analysis, where Output returns the training accuracy of a model:

GMB <= for g in genemap union

{(gene:= g.g_gene_name, burdens :=

(for o in occurrences union

for s in clinical union

if (o.donorId = s.sample) then

for t in o.transcript_consequences union

if (g.g_gene_id = t.gene_id) then

{(sid := o.donorId,

lbl := s.tumor_tissue_site,

burden := if (t.impact = "HIGH") then 0.80

else if (t.impact =

"MODERATE") then 0.50

else if (t.impact =

"LOW") then 0.30

else 0.01)}).sumBy({sid,

lbl}, {burden}))};

Output <= trainUDF(GMB, {sid, lbl, _1,burden, ANOVA})

In the above program, a user has defined a single UDF for the whole training portion of the

pipeline, trainUDF, i.e. the external library part of 2.5. The output from the programs is

passed as feature vector from the NRC language to the externally-typed trainUDF. The final

output of the UDF is the training accuracy of the model. The testing accuracy of the model

is outputted by a different UDF that is defined for testing. In order to run this program, the

user registers trainUDF with the UDF-registry denoting it as PythonType and providing the

function definition in trainUDF.udf. The definition of a UDF for the shredded compilation

3.3 External Types 40

route is shown below:

def trainUDF(top, first, pivot_id, lbl, gene_id, score_metric, feature_method

):

load necessary imports

import

...

access inputs from TraNCE that are registered as temporary views

data = sqlContext.table(first)

data.printSchema

df = data.toPandas()

...

pivot dataframe

df.pivot(index = [pivot_id, lbl], columns = gene_id, values =

score_metric).fillna(0.0)

...

feature selection

topk_features = topKFeaturesANOVA(X, df, ifPlot = False, topK = 200) if

feature_method == "ANOVA" else (topKFeaturesMutual(X, df, ifPlot =

False, topK = 200) if feature_method == "MI" else

(...)

...

)

fit model, get accuracy

history = model.fit(X_train, y_train, validation_split = 0.30, epochs=

10)

3.3 External Types 41

acc.append(history.history[’accuracy’])

...

return accuracy

return accuracy

In the example above, the top and first parameters come from the output of the NRC

program and represent the top and dictionary type outputs of the shredded compilation:

GMB top and GMB burdens Dict (Section 2.4.5). These are strings representing the names

of the inputs, since they have been registered as a temporary view, and then accessed with

sqlContext.table within the Python paragraph. The user defines a list of parameters that

are passed as values in NRC. The pivot id, lbl, gene id, and score metric parameters ask the

user to input the parameters they want for the pivot function, [47]. The pivot function is

a Pandas function that groups by (over pivot id and lbl) the column (gene id) given and

sums over the values (score metric). Finally, the feature method parameter asks the user to

input the feature selection method they wish to perform. They can choose from the list of:

{chisq, MI, ANOVA, MultiSURF, RFE}, otherwise, their input is not valid. These aspects

are specific to the trainUDF function - the core of each UDF function depends on the task.

Figure 3.2: Outline of the steps defined in the UDFs. Data is processed initially in
Spark (darker shaded boxes) and then in python. A neural network is then defined and
trained on the extracted features.

3.4 UDF Optimization Hints 42

To summarize, the example UDF above is provided as the truncated view of a more compli-

cated UDF function. Figure 3.2 summarizes the main steps of the classification-based UDFs

that were the focus of this thesis. As we will see in the next Sections, 5.3.2 and 5.4.1, different

tasks involve different datasets and methods of feature selection. For the thesis, there are two

UDFs defined for each of the different tasks discussed in the Experiments Section, Section 5.

Namely, there are two UDFs for the binary classification task, two UDFs for the multi-class

classification tasks, and two UDFs for the one-vs-rest classification tasks. For the full list of

the defined UDFs, we refer the reader to the Github repository, [48].

3.4 UDF Optimization Hints

The black-box nature of UDFs means that program analysis would need to be done in order

to identify what types of operations were capable of being optimized. We remove the need

for program analysis by allowing the user to specify a hint within the application of a UDF

within the NRC of a TraNCE program.

The UDF definition from Section 2.5 is extended with a hint parameter which takes an

input string and additional parameters specific to the hint, if relevant. We update the UDF

definition 2.5 to support this additional information as an optional input:

trait Udf {

// the name of the UDF

def name: String

// the input expression to the UDF

def in: Expr

// the output type of the UDF

def tp: Type

// additional parameters passed to the UDF

def params: List[String]

// optional hint info

def hint: Option[(String, Option[Double], Option[Double])

}

3.4 UDF Optimization Hints 43

Users can then define the hint as an additional parameter inside of a UDF that exists in the

registry:

... <= trainUDF(GMB, {sid, lbl, _1,burden, ANOVA}, udfhint)

Note that though the hint is supplied within the UDF function call in the NRC program, the

hint information is captured at the level of the optimizer. In the optimizer, the hint will be

translated into an additional node in the query plan that states where the appropriate filter

will be applied. Thus the hint information is only used internally - it will not impact the

code generation of the downstream UDF function call specified by the user. We extend the

optimizer with a component that can detect a UDF node within the query plan and analyze

the hint parameter. Query optimization is also a significant topic for optimizing runtimes,

but due to time constraints was not investigated in depth. We note, however, that we present

an optimization specific to multi-omics queries in the appendix in Section B.

Section summary:

In this section, we described how we extended the TraNCE framework and how we made

changes that were UDF-specific for the majority of the steps in transforming the NRC pro-

gram into generated code. We also note that we have now enabled analysis that was previously

done in external libraries, to be done in the TraNCE framework via the UDFs. Finally, we

introduced a hint optimization. Having introduced the hint, in the next section we discuss

how we use it to optimize UDFs, focusing on feature selection filters.

44

4 UDFs with Feature Selection Filters

In this section, we describe a use case for UDFs and the related hint optimizations specific to

feature selection in ML tasks. We first discuss in detail how we defined the filters and then

how we implemented them in TraNCE. We then describe hints related to the filters.

4.1 Feature-selection Based Filters Introduction

As discussed earlier in Section 2.6, the feature space when dealing with biomedical data is

large. The runtime of wrapper-style feature selection methods, such as RFE, is dramatically

increased in such big feature spaces, making their use virtually impossible. For this reason,

we decided to investigate how pushing filters upstream into NRC affects first the runtime of

such filters, and second, affects the accuracy-related performance of the models. The run-

times of these filters can be found in the Experiments Section, in Section 5. We present below

an explanation of the two filter-pushing methods that we provide in TraNCE, which we call

feature-selection based filters. These are filters based on chi-square and mutual information

feature selection methods. Correlation is an example of how a full calculation, i.e. calculating

the Pearson correlation coefficient precisely without estimations, can be pushed into NRC

while chi-square is provided as an example of how partial calculations can also be pushed

into NRC. The general idea is that we can push these lightweight calculations into the NRC

query in order to remove features that are likely to get thrown out from any feature selection

method. This will speed up wrapper-style methods and help localize filtering and embedding

methods to increase the quality of their feature sets.

4.1.1 Correlation Filter

The mutual information filter was discussed in Section 2.6. For a predictive model, we want

to reduce the feature space and end up with features that maximize the mutual information

between the selected features - a subset of the initial features - and the target variable. How-

ever, maximizing such quantity is an NP-hard optimization problem, due to the exponential

4.1 Feature-selection Based Filters Introduction 45

number of possible combinations of the features. Due to the complicated nature of the fil-

ter, we decided to use an approximation of it and hence considered a correlation calculation.

The correlation calculation is an ideal candidate because the full calculation can be pushed

upstream without any heuristics. The correlation coefficient, ρ is defined as:

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

The above calculation shows how ρ is calculated between a feature X, and the target variable

Y . x̄ is the mean value of the feature simply calculated from the sum of the xi values divided

by the total number of values, n. The above calculation is then repeated for all features, and

so in the end we have a list of correlations between all features and the target variable.

It was expected that the most important features will be the ones with a relatively large

correlation (either positive or negative). On the one extreme, if we supposedly have two

variables, X and Y (where X is the predictor variable and Y the predictand variable) and

they are independent (implying ρ = 0), then knowing X does not give any information on Y,

so we don’t want X as our predictor. On the other extreme, if knowing X we can determine Y

(so X is a deterministic function of Y), then we want to have X as our predictor to reduce the

uncertainty of Y and make a good prediction. Correlation values fall somewhere in between,

-1 and 1, -1 ≤ ρ ≤ +1, and so we want to keep the features that have values close to the two

extremes, -1 and +1.

Finally, we need to define a threshold for deciding which features we want to keep. As an

example, we could discard all features with |ρ| < 0.1. The features then with |ρ| ≥ 0.1 are

used as the input to the downstream analysis, meaning that they are still going to be further

filtered by one of the feature selection methods discussed in Section 2.6. Hence, by defining

the correlation filter, we cut down the large initial feature space, into one where the runtime

of various feature selection methods is greatly reduced, as we will see in Section 5.3.

4.1 Feature-selection Based Filters Introduction 46

4.1.2 Chi-square Filter

Details about the chi-square feature selection can be found in Section 2.6. Due to the presence

of hypothesis testing and the use of p-values, it was not possible to push the exact chi-square

filter calculation upstream. For this reason, the filter we define does not include any hypothesis

testing but involves the calculation of a variation of χ2 value, that we call χ̃2 and define below:

χ̃2 =
n∑
k=1

(Ok − Ek)2

Ek

Thus, the chi-square calculation is an example of how partial calculations can be used to push

filters upstream into NRC. In the above equation, χ̃2 is calculated for all features, and so here

we suppose that there are n observations for each of the features. Ok denotes the observed

value of the feature and Ek represents the expected value. To give a simple example of how

this is calculated, consider Table 1 below, where for simplicity we suppose that the target

variable, Y is binarized. Binarization is the process of making a multi-label variable into one

with labels involving just 0 and 1. For example, we can binarize a variable Y by creating

columns for each different label of Y, and denoting by 1 for the value of Y we are interested in

and 0 for everything else. Currently, the filter implementation does not support binarization

which was manually done on occasions, but the future plan is to implement it along with the

filters. n denotes the total number of unique values of the target variable, Y.

Table 1: χ̃2 calculation example

Observation Y Feature 1 ... Feature n

1 0 4.6 ... 1.0

2 1 4.2 ... 1.4

3 1 4.5 ... 1.6

4 1 5.0 ... 2.0

5 0 5.3 ... 2.5

6 0 4.0 ... 0.9

4.1 Feature-selection Based Filters Introduction 47

Consider Feature 1. We perform a dot product between the feature and target. For Y = 0,

we have a sum of 13.9 and for Y = 1 a sum of 13.7. We next calculate the class frequency, so

P(Y=0) = 0.5 (as half of the observations have a 0 label) and P(Y=1) = 0.5 as well. We then

calculate the sum of all feature values, so here count = 13.9 + 13.7 = 27.6. We now take the

dot product to calculate the expected matrices. So for Y = 0, the observed value of Feature 1

is P(Y=0)*count = 0.5 * 27.6 = 13.8, and for Y=1, P(Y=1)*count = 0.5 * 27.6 = 13.8. We

finally calculate the χ̃2 value, χ̃2 = (13.9−13.8)2

13.8 + (13.7−13.8)2

13.8 = 0.001449. The same procedure

is then repeated for all features. For the original chi-square feature selection, this value is

used for hypothesis testing. For the purposes of the local filter that we pushed, we sort these

values. A high χ̃2 value indicates that the hypothesis of independence is incorrect, and hence

the higher the χ̃2 value the more the feature is dependent on the response variable, and so

can be selected for model training. Hence, as mentioned in the previous section, we define a

threshold and keep features with scores exceeding that threshold, where the threshold can be

adjusted depending on the desired number of features.

4.1.3 Filter Implementation

Since filters were pushed upstream into the NRC program, each implementation was in

Spark/Scala and thus did not involve the use of any external libraries. Given that we fo-

cused on tasks that integrated datasets to produce light-weight feature vectors, an important

advantage of pushing the filter upstream, i.e. into the TraNCE framework, was that we could

reduce the data size as much as possible before it was passed to an external library, where

we lose the ability to optimize ourselves. Another benefit was that we could leverage the

distributed nature of the data within TraNCE, which was not guaranteed by an external

environment. We now discuss implementation details and note specifics to the shredded com-

pilation route when necessary.

When filters are pushed upstream from an external environment into a distributed environ-

ment, it is important to ensure parallelization of the calculation due to the often large number

of features present. Because of the need to parallelize the calculation, many partitions are

4.2 Feature-selection Based Hints 48

working in parallel. This means that in order to perform the calculation without moving

data around, all the values associated with a specific feature must exist on the same parti-

tion. We guarantee this by the structure of our input program. The top-level contains the

feature names and the first-level contains the (sample, label, value) tuples where samples is

the row identifier, label is the predictor label and value is the feature value in the feature

matrix. For the shredding procedure, the lower-level dictionary is a single table partitioned

by feature name - meaning that all the values for each feature are guaranteed to be within

the same partition. This allows us to apply calculations in parallel across data distributed

by feature name, thereby speeding up the calculation. The calculations mentioned above are

applied locally at each partition, and the thresholds are also applied locally at each partition.

There is a benefit in the use of thresholds since we avoid having to do a global sort across all

features once those that survive the threshold are collected. If we were to use a method that

required picking the top-valued features, then this requires globally sorting all the values and

that would be less optimal. This is because sorting features locally will lead to only selecting

features that are optimal based on the local maximum and not the whole feature space.

As a final step, we collect the surviving features into a local set and broadcast that set to

each partition to apply as a filter in the first-level dictionary. Note that because partitions in

distributed frameworks are immutable, filtering cannot happen locally within each partition

because we need to manipulate the partition data as a separate transformation. However,

since the surviving feature list is assumed to be relatively small, i.e. less than the input

feature set and only the names of said features, then the broadcasting cost is amortized. We

now discuss how filters are integrated into the TraNCE framework.

4.2 Feature-selection Based Hints

Hints are available for any UDF that performs downstream analysis that will filter out features

based on a relationship to a predictor label. We make two filters available in the framework

in order to reduce the feature space. The hint is provided to allow the user to choose between

the two filters, chi-square (chisq) or correlation (corr). Feature-selection filters have an upper

4.2 Feature-selection Based Hints 49

bound threshold and a lower bound threshold as an extra parameter. If thresholds are not

supplied defaults are used. We use a default of 0.01 since if users do not input a threshold

then we do not want to filter out any important features. If no hint is supplied, then no filter

is applied.

If a feature-selection hint is specified in a UDF, a new filter-based UDF is defined as a node

above the original UDF node, taking as input the input passed to the original UDF. This

will signal to the code generation process to apply and generate the code associated with the

local filter, with the user-defined thresholds. The original UDF node is then defined with

the same definition as before, but instead takes the output of the filter-based UDF as input.

The design choice to use the UDF extensions to apply UDF-based filters was made for two

reasons. First, it minimizes the extensions required to support UDF optimizations. Second,

this automatically allows users to add their own filters into the framework. Users can define

their own filters by registering their filter definition and metadata to the UDF registry. For

more information and example filters, see [50].

Two other optimizations, which we refer to as partial filters, can be applied to further speed

up the advanced filtering methods. We provide an additional hint that can be supplied to

a UDF as a way of performing an initial filtering of features depending on the threshold,

particularly small thresholds, provided by the user. In that case, features that will be filtered

out are very likely to be discarded by any of the feature selection methods and so do not affect

the performance of the model. This is based on the assumption that feature-selection based

filters focus on the strength of the dependency between a feature and a target variable. For

more details on an experiment performed on this, we refer the reader to Section 5.4. These

are available as additional filter hints called chisq+ and corr+.

We also explored pushing two other types of filter, source filter and value filter. The source

filter is pushed into the input data source before the feature values are aggregated (default is

0.01) while the value filter is pushed after the feature values are aggregated. Both filters can

be particularly useful when the data size is large or cluster resources are low. This pushing

requires a bit more involved analysis of the query plan, so it was only applied manually for

4.2 Feature-selection Based Hints 50

the sake of exploration. In the current implementation, we allow both the source and value

filter to be used independently of the feature-selection based filters.

Section summary:

In this section, we introduced the feature-selection based filters (correlation and chi-square)

along with partial, source and value filters. These filters aim to reduce the feature space from

the output of programs by using methods that will avoid where possible the loss of informa-

tive features. In the Experiments Section, we make use of the UDFs we introduced and the

different filters to investigate the overhead the filters add to the runtime of the NRC program

and the downstream feature selection. Also, we run experiments on two classification tasks

(binary and multi-class) and investigate the performance of the models with and without the

use of the filters. Models that do not use filters, and hence have as input the full initial feature

space, are considered the baselines. We then investigate the features outputted by some of

the best performing models by performing gene enrichment analysis.

51

5 Experiments

So far, we have introduced the TraNCE framework and feature selection methods. We have

also defined feature-based filter methods and how to combine them with UDFs which act as

a training and testing pipeline. We have also outlined how we extended TraNCE with UDFs

and discussed an optimization hint. We now want to test the implementation of UDFs on

biomedical data sources, mainly focusing on runtimes and model accuracy. Our baseline is

the model where no filter is pushed.

In this section we outline the experiments, describe the experimental setup, and present and

discuss the results. We first outline the experimental setup in Section 5.1, then in Section

5.2 we discuss an initial feature analysis by which we determined the optimum number of

features to input to our neural network, and function optimization. We then discuss the

binary classification task for the severity of prostate cancer in Section 5.3. In that section,

we present first three different programs of calculating GMB for predicting the severity of

prostate cancer and compare their runtimes and the model performance. In Section 5.4, we

introduce the pan-cancer multi-class classification problem. Initially a multi-class analysis,

Section 5.4.1, and finally we discuss a one-vs-rest approach for the same task, in Section

5.4.2. Finally, in Section 5.5 we discuss analysis on genes extracted from different models and

present our findings.

We outline in the list below the aims of the experiments:

1. Define thresholds for the input number of features at which RFE runs at a reasonable

time and decide where it is best (Scala or Python) in terms of computational costs to

run data processing functions, such as pivot functions

2. Investigate the runtimes of models both for the binary and multi-class classification

tasks, comparing the baseline case where UDF is used without any filter against models

with filters pushed

3. Investigate the accuracy of models for the two tasks we considered. First, the binary

5.1 Experimental Setup 52

classification task of predicting the severity of prostate cancer, and second the multi-

class classification problem. For each task, we want to see which omics approach, (single

or multi-omics), which feature selection method, and which feature-selection based filter

results in the best performing models.

4. Analyze the feature sets from the best performing models of the prostate and multi-class

experiments using gene sets analysis tools to assess their biological relevance

The experimental results can be summarized as follows:

• Pushing filters from UDFs into the NRC program can provide up to x16.5 speed up for

filter-based feature selection. This enables wrapper-based methods to run to completion,

which were previously unable to perform at all.

• Pushing feature-selection filters adds little overhead to the total runtime of the NRC

program.

• Pushing filters from UDFs benefits binary classification methods for single and multi-

omics approaches, reporting up to 99.3% accuracy for predicting prostate cancer sever-

ity.

• Partial filters pushed from UDFs are useful for large datasets, restricted cluster sizes,

and can increase model performance for multi-classification problems.

5.1 Experimental Setup

For the experiments we discuss, we use the occurrences, gene expression, clinical,

samples and genemap data sources, introduced in section 2.2. All the data sources except

genemap come from the TCGA dataset, while genemap comes from GRCh37. We also note

that all the experiments were run with the shredded compilation framework and not the

standard one. We recall the TMB calculation from Section 2.1. The experiments in this

section focus on the sub-calculation of TMB, GMB, and different approaches for calculating

GMB scores. The neural network (NN) that is used as our classification model is a fully

5.1 Experimental Setup 53

connected, feed-forward NN. In the case of the binary classification tasks, the NN is made up

of three dense layers. The first two dense layers have a LeakyReLU activation function with

alpha = 0.05 and a dropout layer with the dropout rate being 0.15. The third and final out-

put layer has a sigmoid activation function. The sigmoid activation function was used since

we were performing binary classification and its output can be interpreted as a probability

since it outputs values between 0 and 1. The model is trained using binary cross-entropy as

the loss function and Adam optimizer for the gradient descent optimizer. For the multi-class

classification tasks, the first two dense layers also have LeakyReLU activation functions, with

alpha = 0.05, however, the first dense layer has a dropout rate of 0.30 while the second dense

layer has a dropout rate of 0.20. The final output layer has a softmax activation function (due

to the presence of multiple target labels) and categorical cross-entropy for the loss function.

The gradient descent optimizer is the Adam optimizer. For all experiments, 70% of the data

was used for training, and 30% for testing. The training set was further split into 70% training

and 30% validation sets. All experiments were performed on a single node cluster with Spark

3.1.2 and Scala 2.12, one worker, 8 cores, and 100 G memory. The datasets we used for each

experiment are discussed in the experimental setup of each experiment.

The Mutual Information (MI), chi-square, ANOVA, and RFE feature selection methods were

implemented using python’s package, sklearn.feature selection [46]. For RFE, we used a

random forest classifier as the estimator with a step size of 10. The estimator is a supervised

learning model with a fit method that ranks features based on feature importance. Feature

importance refers to techniques that assign a score to input features based on how useful they

are at predicting a target variable. The step size corresponds to the number of features that

are removed at each iteration. MultiSURF was implemented using the skrebate package,

[52]. Experiments will include runtimes, the program we ran to calculate GMB, and accuracy

results.

5.2 Exploration 54

5.2 Exploration

The aims of this section were to define thresholds for the input number of features at which

RFE could run at a reasonable time and investigate the pivoting function.

The number of features to be used as the input of predictor models (from here on referenced as

topk features) relative to the total number of observations is a very important and challenging

question for machine learning tasks. Following the one in ten rule, detailed in [43] and the

general consensus in the computer science world, it was decided that at most 10% of the total

number of features were to be used as an input to the model, as otherwise the model would

overfit [17]. To investigate this, we present the results of the calculation of TMB using GMB

as shown in the program below and plot the training and validation accuracies of the neural

network ran using a big number of features, ∼ 20000:

GMB <=

for g in genemap union

{(gene:= g.g_gene_name, burdens :=

(for o in occurrences union

for s in clinical union

if (o.donorId = s.bcr_patient_uuid) then

for t in o.transcript_consequences union

if (g.g_gene_id = t.gene_id) then

{(sid := o.donorId,

lbl := if (s.gleason_pattern_primary = 2) then 0

else if (s.gleason_pattern_primary = 3) then 0

else if (s.gleason_pattern_primary = 4) then 1

else if (s.gleason_pattern_primary = 5) then 1

else -1,

burden := if (t.impact = "HIGH") then 0.80

else if (t.impact = "MODERATE") then

0.50

else if (t.impact = "LOW") then 0.30

else 0.01

)}

).sumBy({sid, lbl}, {burden})

)}

We note that the training and validation accuracies shown below, come from the training of

the neural network from the experiment of the binary classification tasks discussed in Section,

5.3.1. Figure 5.1 uses chi-square as the feature selection method and extracts 20 000 features

5.2 Exploration 55

from the output of the program above (which was around 55 000), while Figure 5.2 uses

ANOVA as the feature selector again with an output of 20 000.

Figure 5.1: Training and validation error of the model using chi-square as feature
selector method. The model uses 20000 features as its input coming from chi-square.
The graph clearly displays overfitting problems.

Figure 5.2: Training and validation error of the model using ANOVA as feature selector
method. The model uses 20000 features as its input coming from the ANOVA filter.
The graph clearly displays overfitting problems.

In both graphs, we can clearly see an overfitting pattern. The model loss for validation

increases while the loss for the training decreases as the number of epochs increases. Therefore,

also following the 10% rule, less than 5000 features were considered for the topk features

5.2 Exploration 56

variable. To explore this further, cross-validation was run across 5 folds using both chi-square

and ANOVA. These two feature selection methods were chosen for time efficiency since they

only took one second to run. The cross-validation was run for 100 epochs and we present

the results in the table below. The columns denote the number of features used, while the

percentages are the testing accuracies.

Table 2: Severity of prostate - topk features cross validation

Method 5000 4000 3000 2000 1000 200 100

chi-square 80% 80% 75% 80% 78% 85% 70%

ANOVA 80% 82% 82% 81% 84% 88% 72%

As we can see from the results above, topk features = 200 outperforms all other number of

features for both chi-square and ANOVA. It was therefore decided to use topk features = 200

for this experiment and for the ones that follow.

Moving on to the optimization part, we thought it was worth considering where to execute

the pivoting function since it was used for all of our experiments. There were two options;

either in python using Pandas, or within the TraNCE framework (and so in Scala). We hence

investigated when the runtime of the pivoting was “reasonable” 9 in Scala by trial and error:

• with 500 000 rows runtime was > 5 minutes

• with 400 000 rows runtime was > 5 minutes

• with 300 000 rows runtime was > 5 minutes

• with 200 000 rows runtime was > 5 minutes

• with 100 000 rows runtime was > 5 minutes

We note that initially, the number of rows outputted by the programs was in the range of 400

000-600 000 rows. We also note that after 5 minutes passed, we ended the execution of the

function.

9Here the time which we accepted as reasonable for the pivoting operation was 5 minutes

5.2 Exploration 57

On the other hand, pivoting in pandas, took 21 seconds for any number of rows input with

very slight differences in time (in the range of 1-2 seconds). The fact that it took at least

x15 more for the pivoting operation to execute in Scala affirms the choice of scientists to

often choose Python to define their UDFs since pivoting is a crucial step in the data handling

process. Having performed an initial exploration, we now continue to the experiments.

5.3 Binary Classification: Prostate Cancer Severity 58

5.3 Binary Classification: Prostate Cancer Severity

5.3.1 Single-omics - Mutation Impact Burden

The aims of this experiment included the investigation of the overhead the pushed feature-

selection based filter adds to the total runtime of the program for the binary classification task

using a single-omics approach. We also aimed to investigate the test accuracy of predicting

the severity of prostate using a single-omics approach (occurrences), comparing our results

against an initial model that does not use a feature-selection based filters. The genemap,

occurrences and clinical data source were used and the size of the files were 1.2GB, 4.67

GB and 369 KB respectively. For the mutation impact burden calculation, we used the TCGA

dataset with the Prad somatic mutations which are prostate-specific. Our aim was to predict

the severity of prostate cancer from a list of patients diagnosed with prostate cancer. The

Gleason scoring system is one of the most common prostate cancer grading systems used.

Pathologists monitor the arrangement of cancer cells and assign a score for two different

locations, primary and secondary - we focused on the primary location.

Following our discussion on wrapper-style feature methods from Section 2.6 and their long

runtimes, it was of interest to come up with a threshold on how many features RFE could run

at a reasonable time (maximum of 25 minutes). We present in Figure 5.3 below the runtimes

of the 5 feature selection methods we considered. These runtimes come from the execution of

the GMB program introduced in the previous Section, 5.2.

5.3 Binary Classification: Prostate Cancer Severity 59

Figure 5.3: Stacked bar plot showing the runtimes of different feature selection methods
of the calculation of the single-omics mutation impact burden calculation from the
moment the program is executed until extracting the features.

In the Figure above, NRC (blue, bottom part of the bar) denotes the runtime of the program

(which is common for all feature selection methods). Filter (orange, second part of the bar)

denotes the runtime of the filter (either correlation or chi-square). The first stacked bar of each

method does not include filter runtime as we used all the features outputted by the program.

Feature selection denotes the runtime it took for the 5 methods respectively to run given the

input. corr 20k denotes the correlation filter with 20 000 features as input, corr 10k with 10

000 features, and so on. The final execution time is calculated by adding the 3 runtimes,

NRC + Filter + Feature selection. Moreover, for chi-square and ANOVA, the runtimes for

the respective Feature selection is around 1 second, which is why they are not visible from

the plot. We also note that RFE fails to run (the Zeppelin interpreter crushes) without any

filter and is denoted on the plot with the label “FAIL”. We can see that the runtimes of

the filters decrease as the threshold becomes more strict. For both corr 20k and chisq 20k

the runtimes are much bigger than the corresponding ones from corr 10k and chisq 10k. We

5.3 Binary Classification: Prostate Cancer Severity 60

can see that RFE’s runtime is the largest but decreases dramatically when the threshold is

stricter (corr 20k compared to corr 10k). We can also see major differences in the runtimes

between feature selection methods. Both chi-square and ANOVA have very small runtimes

compared to MI and MultiSURF. For the full feature selection runtimes, since they are not

visible clearly in the graph due to the big difference in runtimes across feature selections, we

refer the reader to Section A. In summary, we see up to an x16.5 speed up for filter-based

feature-selection and are able to run wrapper methods to completion which were previously

unable to perform at all.

The program we used was the one from the previous Section. 5.2. As shown in the program,

after joining the different data sources we labeled as 0 tuples with gleason pattern primary

scores being 2 or 3 as they were considered low in the medical community, and scores of 4 or

5 were considered high.

Initially, we ran the results of the program using all the features (55000) outputted (and hence

without using any of the feature-selection based filters discussed in Section 4.1). These are

the results after 100 epochs, performing the experiment 100 times and taking the average

from all the runs and by using the train and test split mentioned in the introduction of the

Experiments Section. We also note following our previous discussion, that for this experiment

and the ones that follow, topk features was fixed to 200. Also, we will refer to models by

the specific feature selection method used to generate the topk features: chi-square, ANOVA,

RFE, etc. We use subscripts to denote the number of features that are passed into the feature

selection methods, for example, ANOVA 10000 means we are using the ANOVA model with

10000 features as input to the model.

Table 3: Binary classification - Single omics Mutation impact, all features

Method Testing Accuracy

chi-square 60.1%

ANOVA 78.3%

MI 62.7 %

5.3 Binary Classification: Prostate Cancer Severity 61

As we can see, ANOVA outperforms both chi-square and MI quite significantly - an 18.7%

difference with chi-square and 15.6% with MI. Here, we note that there are no results for RFE

as it took too long to run (more than 1 hour at which point the interpreter crashed) using all

the 55000 features.

Results of the chi-square filter pushed upstream

In the table below, we present the results of the same analysis performed, but using the

chi-square as a feature-selection based filter (discussed in 4.1). The output of the filter was

a score, χ̃2 for each feature, where χ̃2 ∈ R+. Each time we wanted to output a different

number of features, we defined a threshold and any features with χ̃2 less than the threshold

was dropped. We expected that the bigger the score of the features, the more important they

were for downstream analysis. We note that 20 000 features had χ̃2 > 0.088, 10 000 had χ̃2

> 0.28, 5000 had χ̃2 > 0.86, 2000 had χ̃2 > 2.06 and 1000 had χ̃2 > 3.56.

Table 4: Binary classification - Single omics Mutation impact, chi-square
feature-selection based filter

Method 20000 10000 5000 2000 1000

chi-square 74.4% 74.1% 75.0% 74.9% 62.2%

ANOVA 83.8% 83.9% 70.9% 71.8% 77.6%

RFE 84.8 % 88% 79.5% 58.3% 58.3%

MI 59.3% 66.6% 52.3% 52.9% 55.2%

Pushing chi-square, not only benefited the results in the sense that RFE could now have

been used (and in the end perform the best), but also improved the performance of all three

other feature methods. In particular, ANOVA’s performance improved from 78.3 % to 83.9%

(using 10 000 features), chi-square increased from 60.1% to 75.0% (using 5000 features) and

MI improved from 62.7% to 66.6 % (using 10 000 features). RFE was the best performing

model achieving an accuracy of 84.8%.

5.3 Binary Classification: Prostate Cancer Severity 62

Results of the correlation filter pushed upstream

In the table below, we present the results of the experiment performed with the correlation

feature-selection based filter. 20 000 features had low correlation with the target variable, 10

000 features had medium correlation and 5 000 had high correlation. Low correlation here

denotes features having |r| > 0.10, medium denotes |r| > 0.20 and high |r| > 0.90. We note

that we considered the absolute value of the correlation, r, since we were interested in both

negative and positive correlation between features and target variables. If a feature had strong

negative correlation, that still meant that it was useful in the prediction.

Table 5: Binary classification - Single omics Mutation impact, correlation
feature-selection based filter

Method 20000 10000 5000

chi-square 75.2% 68.6% 62.1%

ANOVA 78.6% 78.1% 91.2%

RFE 90.2 % 93.1% 94.0%

MI 70.7% 70.3% 78.7%

Even though the correlation filter did not improve the accuracy outputted using the chi-square

filter, it drastically improved the results for the other three methods. In particular, MI’s

accuracy improved from 66.6% to 78.7% (using 5 000 features). Even though the performance

of MI was not the best one, it was expected that its performance was going to increase by

pushing this filter. This is because, as discussed in Section 2.6, MI depends on the correlation

between the features and the target variable, and hence by filtering out the features with lower

correlation, MI was expected to select the better performing features when outputting the

topk features. Moreover, we saw a good improvement on both ANOVA 5000 and RFE 5000.

ANOVA’s performance increased from 83.9% to 91.2%, while RFE’s performance increased

to 94.0%. Overall, compared to the baseline model, i.e. where all features were used with

no filter, we see a big improvement in the model performance. Comparing with RFE 5000’s

accuracy which was 94.0%, we improved the best baseline model which was ANOVA with

78.3% by 15.7%.

5.3 Binary Classification: Prostate Cancer Severity 63

5.3.2 Single-omics - Gene Expression

The aims of this experiment included the investigation of the test accuracy of predicting

the severity of prostate cancer for the binary classification task using a single-omics approach

(gene expression this time), comparing our results against an initial model that does not use

a feature-selection based filter as well as the previous results where we used the occurrences

data source. The genemap, gene expression, clinical and samples data source were used

and the size of the files were 1.2GB, 167MB ,369 KB and 863 KB respectively. We used the

same experimental setup as the one in the previous Section, 5.3.1 but the difference was the

way we calculated the GMB. This time, we used the Fpkm score of genes. Fragments Per

Kilobase of exon model per Million reads mapped, (Fpkm), are common units reported to

estimate gene expression based on RNA sequential data. It is calculated from the number of

reads mapped to a particular gene sequence. For more information, we refer the reader to

[41]. For this experiment, we used the gene expression data source and not occurrences

as the Fpkm score information is associated with the gene expression of genes and not with

their mutational occurrences. We present the program below noting that for this program,

aside from using gene expression instead of occurrences, we also had to join the genes on

samples since there were no common attributes between clinical and gene expression.

GMB <=

for g in genemap union

{(gene:= g.g_gene_name, fpkm :=

(for e in expression union

for c in clinical union

for s in samples union

if (s.bcr_patient_uuid = c.bcr_patient_uuid) then

if (e.ge_aliquot = s.bcr_aliquot_uuid) then

if (g.g_gene_id = e.ge_gene_id) then

{(sid := e.ge_aliquot,

lbl := if (c.gleason_pattern_primary = 2) then 0

else if (c.gleason_pattern_primary = 3) then 0

else if (c.gleason_pattern_primary = 4) then 1

else if (c.gleason_pattern_primary = 5) then 1

else -1,

fpkm := e.ge_fpkm

)}

5.3 Binary Classification: Prostate Cancer Severity 64

).sumBy({sid, lbl}, {fpkm})

)}

The results shown below came from using all features outputted by the program above. The

number of features outputted this time was 36 000 owing to the difference in the data sources,

gene expression data source and occurrences and the fact that we joined through a different

data source (samples).

Table 6: Binary classification - Single omics gene expression, all features

Method Testing Accuracy

chi-square 59.8%

ANOVA 80.7%

MI 67.8 %

Comparing the results above with the ones from table 3, we can see that we have very simi-

lar performance for chi-square and ANOVA, with chi-square’s accuracy falling by 0.3 % and

ANOVA’s accuracy improving by 2.4 %. The MI model’s performance however increased from

62.7% to 67.8%. This suggested that at least when using all the features, the Fpkm score

was a better attribute to use for the prediction of prostate cancer severity compared to the

impact score.

Results of the chi-square filter pushed upstream

In the table below, we present the results of the same experiment but using chi-square as

the feature-selection based filter. We note that the thresholds defined for extracting different

amounts of features were bigger, since the values of Fpkm are greater than impact values. 20

000 features had χ̃2 > 280 000, 10 000 features had χ̃2 > 3.3× 106, 5000 had χ̃2 > 12× 106,

2000 had χ̃2 > 32× 106 and 1000 had χ̃2 > 52× 106

Table 7: Binary classification - Single omics gene expression, chi-square
feature-selection based filter

5.3 Binary Classification: Prostate Cancer Severity 65

Method 20000 10000 5000 2000 1000

chi-square 60.3% 61.1% 61.3% 57.6% 58.9%

ANOVA 76.8% 74.5% 70.4% 64.3% 58.8%

RFE 56.7% 62.2% 62.2% 62.6% 54.8%

MI 62.2% 61.5% 61.5% 51.9% 54.6%

Comparing with the results from table 4, we see that the general trend is that the models per-

form worse. With the exception of MI 2000 and MI 5000, all other test accuracies are lower.

The best performing model was ANOVA 20000. It is also worth mentioning that comparing

these results with the ones from table 6 above where all the features were used, we also see

that with the chi-square filter pushed the model accuracies fall.

Results of the correlation filter pushed upstream

In the table below, we present the results of the experiment performed with the correlation

filter. Compared to the results we presented in table 5, we can see that we were able to

distinguish with more granularity between the number of features. For more discussion on

why this was the case, see Section 6. For this experiment, 20 000 features had |r| > 0.10, 10

000 features had |r| > 0.15, 5000 features had |r| > 0.20, 2000 features had |r| > 0.40 and

1000 features had |r| > 0.95.

Table 8: Binary classification - Single omics gene expression, correlation
feature-selection based filter

Method 20000 10000 5000 2000 1000

chi-square 61.1% 62.2% 70.7% 70.6% 74.7%

ANOVA 83.3% 83.3% 83.4% 83.0% 83.2%

RFE 78.3% 76.3% 78.6% 87.4% 84.0%

MI 77.5% 83.4% 84.2% 87.2% 87.6%

We can see that MI 1000 outputs the best accuracy (with RFE 2000 features being very

close), 87.6%. This is a big improvement in comparison to the results of no filter pushed

5.3 Binary Classification: Prostate Cancer Severity 66

or chi-square pushed, as previously the best model had an accuracy of 80.7%. Moreover,

comparing with the results from the previous experiment in table 5, we see that even though

we don’t match the performance of RFE 10000, which was 94.0%, the best performing model,

MI 1000 takes as input 1000 features. Outputting 1000 features was not possible for the

previous experiment using the same filter. We also note the overall improvement in the test

accuracy with the use of the filter against the baseline model. MI 1000 outputted an accuracy

of 87.6%, while the best performing baseline model, ANOVA, outputted an accuracy of 80.7%,

an improvement of 6.9%.

At this point, we implemented MultiSURF, which was described in Section 2.6, using the

same experimental setup. The testing accuracy was 71.7% accuracy and was obtained using

all the features (hence without any feature-selection based filters). Because of the promising

result, to further investigate MultiSURF, we tested it using the correlation filter. Even though

we fixed topk features = 200 for all other feature selection methods, we investigated what the

optimal topk features was for MultiSURF since it was not investigated before and as it was

implemented using a different Python package. The table below displays the test accuracies

of MultiSURF using a varying number of features as its input and the associated number of

output features that MultiSURF outputted to be used for the neural network (30, 50, and

200):

Table 9: Binary classification - Single omics gene expression, MultiSURF
correlation feature-selection based filter

MultiSURF Features Output 55000 20000 10000 5000 2000 1000

30 69.8% 62.0% 71.9 % 74.6 % 74.6 % 73.0 %

50 69.5% 51% 72.4% 73.1% 75.8% 72.5%

200 69.6% 73.6% 66.0 % 74.8% 77.0% 72.9%

We can see that the once more topk features = 200 was the optimal choice, and hence

topk features = 200 was also used for MultiSURF. Comparing with the results from table

9, we can see that MultiSURF outperforms chi-square, with an accuracy of 77% compared to

74.7%.

5.3 Binary Classification: Prostate Cancer Severity 67

5.3.3 Multi-omics - Integrated Impact and Gene Expression

The aims of this experiment included the investigation of the overhead the pushed filter added

to the total runtime of the program for the binary classification task using a multi-omics ap-

proach. We also aimed to investigate the test accuracy of predicting the severity of prostate

cancer using a multi-omics approach (combining gene expression and occurrences), com-

paring our results against an initial model that did not use a feature-selection based fil-

ter and with the results of the previous two experiments. The genemap, occurrences,

gene expression, samples, and clinical data source were used where the size of the files

were 1.2GB, 4.67GB, 167MB, 863KB and 369 KB respectively. For this experiment, we used

the same experimental setup as with the previous experiments, however, we used a different

approach to calculate GMB. Instead of using one data source to extract information about

mutational burden scores, we combined two omics data sources. For a detailed discussion

on the benefits of the multi-omics approach, we refer the reader to Section 2.1. We present

in Figure 5.4 below the runtimes for this experiment. We note that the runtimes were very

similar to the previous experiment in Section 5.3.2 where gene expression was also used and

so decided to present the runtimes of the multi-omics experiments only.

5.3 Binary Classification: Prostate Cancer Severity 68

Figure 5.4: Stacked bar plot showing the runtimes of different feature selection methods
of multi-omics calculation from the moment the program is executed until extracting
the features.

For this experiment, we note that the runtime of the NRC query is much longer compared

to the one in Figure 5.3 where the occurrences data source was used. This is because we

integrated the gene expression data source which is large. We can also see how small the

runtime of the filters (orange, second bar) is compared to the total runtime, implying that

the filter methods we use add minimal overhead to the total runtime.

We combine the gene expression data source and the Fpkm attribute of the genes, with the

occurrences data source and the impact attribute by multiplying them together. Due to the

fact that the impact scores are relatively small (in the range roughly of 0 to 13), we expected

that the importance of genes with somewhat high impact scores was going to stand out in

this experiment since the impact scores were multiplied with the much larger Fpkm values

(in the range of 0 to 1× 106). We present the program below:

mapExpression <=

for s in samples union

for e in expression union

5.3 Binary Classification: Prostate Cancer Severity 69

if (s.bcr_aliquot_uuid = e.ge_aliquot) then

{(sid := s.bcr_patient_uuid, gene := e.ge_gene_id, fpkm

:= e.ge_fpkm)};

impactGMB <=

for g in genemap union

{(gene_name := g.g_gene_name, gene_id:= g.g_gene_id, burdens

:=

(for o in occurrences union

for s in clinical union

if (o.donorId = s.bcr_patient_uuid) then

for t in o.transcript_consequences union

if (g.g_gene_id = t.gene_id) then

{(sid := o.donorId,

lbl := if (s.gleason_pattern_primary = 2) then 0

else if (s.gleason_pattern_primary = 3) then 0

else if (s.gleason_pattern_primary = 4) then 1

else if (s.gleason_pattern_primary = 5) then 1

else -1,

burden := if (t.impact = "HIGH") then 0.80

else if (t.impact =

"MODERATE") then 0.50

else if (t.impact =

"LOW") then 0.30

else 0.01

)}

).sumBy({sid, lbl}, {burden})

)};

GMB <=

for g in impactGMB union

{(gene_name := g.gene_name, gene_id := g.gene_id, burdens :=

(for b in g.burdens union

for e in mapExpression union

if (b.sid = e.sid && g.gene_id = e.gene) then

{(sid := b.sid, lbl := b.lbl, burden :=

b.burden*e.fpkm)}).sumBy({sid,lbl}, {burden})

)}

Results of the correlation filter pushed upstream

The results displayed in the table below indicate the test accuracies from using the correlation

as the feature-selection based filter. We note here that, as mentioned earlier in the section,

the total number of features outputted from the program was 36 000. The first column hence

contains all the features, and this was done by not defining a threshold to select features.

5.3 Binary Classification: Prostate Cancer Severity 70

Table 10: Severity of prostate - Multi-omics correlation feature-selection
based filter

Method 36000 20000 15000

chi-square 68.6% 76.2% 59.9%

ANOVA 80.9% 80.8% 86%

RFE - 99.3% 95.3%

MI 63.0% 75.1 % 71.2 %

MultiSURF 59.4% 60.9 % 53.8%

The reason why we outputted results only for 20 000 and 15 000 features, was because of how

the correlation filter performed. Around 20 000 features had |r| > 0.55, 15 000 had |r| > 0.90

and 14 000 had |r| > 0.99. We therefore could not have used any other threshold to select a

different number of features. Discussion on the performance of the correlation filter follows

in Section 6.

Comparing the results above with the best performing models from the previous two exper-

iments, RFE 10000 with test accuracy 94.0% using single-omics impact score and MI 1000

with test accuracy 87.6% using single-omics gene expression, we can see that RFE 20000

outperforms both of them with an accuracy of 99.3%. chi-square and ANOVA performed

similarly, while MI’s performance decreased by 10% compared to the experiment in Section

5.3.1 and around 27% compared to the experiment in Section 5.3.2. MultiSURF’s perfor-

mance also decreased compared to the experiment in Section 5.3.2, from 77.0% to 60.9%.

Due to the very high accuracy of RFE 20000, we decided to investigate its performance fur-

ther by using different train and test splits, ensuring the very good performance was not due

to randomness. We thus ran RFE 20000 4 more times using 4 different train and test splits.

We obtained an average accuracy of 96.2% and using the 99.3% accuracy we obtained a final

accuracy of 97.8%. We note here that comparing with the best baseline model where no

filter is pushed, ANOVA with an accuracy of 80.9%, we see an improvement of 16.9% when

5.3 Binary Classification: Prostate Cancer Severity 71

we use the correlation filter.

Results of the chi-square filter pushed upstream

We then ran the same experiment using the chi-square feature-selection based filter. A ben-

efit using this filter was that we could section the number of features much more precisely

compared to the correlation filter. 20 000 features had χ̃2 > 0.04, 10 000 features had χ̃2 >

0.15, 5000 had χ̃2 > 0.40, 2000 had χ̃2 > 1.10 and 1000 had χ̃2 > 2.09.

Table 11: Severity of prostate - Multi-omics chi-square feature-selection based
filter

Method 20000 10000 5000 2000 1000

chi-square 69.8% 68.8% 68.4% 67.5% 69.2%

ANOVA 80.1% 84.6% 85.4% 88.7% 84.1%

RFE 93.5% 92.8% 85.4% 80.0% 73.7%

MI 64.3% 61.1% 58.1% 67.2% 46.4%

MultiSURF 53.8% 54.0% 58.0% 56.8% 63.3%

We continue the experiments with an investigation into feature selection methods and filter

performance on a multi-classification task. Prior to investigating multi-class, we also looked

at identifying prostate tissue of origin from a pan-cancer dataset, as a more simple version of

the multi-class experiment. The experiment can be found in the appendix, Section C. The

experiment and the results were not thoroughly investigated due to time constraints since we

decided to focus on the more challenging multi-class experiment.

5.4 Multi-class Classification: Tumor Site Prediction 72

5.4 Multi-class Classification: Tumor Site Prediction

In this section, we investigate pushing feature-selection based and partial filters for multi-class

prediction. For this experiment, we used the TCGA data set with the MuTect annotations,

discussed in Section 2.2. The data set contains information about the somatic mutations of 18

different types of cancer. For this task, we decided to select the 9 cancer types with the most

samples, namely breast, endometrial, kidney, ovary, central nervous system, stomach, lung,

colon, and head and neck. The neural network used was the one discussed in the introduction

of the Experiments, Section 5. We present below in Figure 5.5 the data distribution of the

various types of cancer (note that Cns denotes Central nervous system):

Figure 5.5: Distribution of the various cancer types

We can see that the most abundant cancer type is Breast cancer with more than x3 samples

than the least abundant ones, Stomach, and Cns. Hence, we expected that the data skewness

was going to have an impact on the results in the favor of Breast type cancer.

5.4 Multi-class Classification: Tumor Site Prediction 73

For this experiment, we used the occurrences data source and the single-omics mutation

burden approach to calculate the GMB owing to the fact that not all 9 cancer types contained

gene expression data. For both experiments in this section, the genemap, occurrences and

clinical data source were used and the size of the files were 1.2GB, 6.74 GB and 11 GB

respectively.

GMB <=

for g in genemap union

{(gene:= g.g_gene_name, burdens :=

(for o in occurrences union

for s in clinical union

if (o.donorId = s.sample) then

for t in o.transcript_consequences union

if (g.g_gene_id = t.gene_id) then

{(sid := o.donorId,

lbl := if (s.tumor_tissue_site = "Breast") then 1

else if (s.tumor_tissue_site = "Lung")

then 2

else if (s.tumor_tissue_site = "Kidney")

then 3

else if (s.tumor_tissue_site = "Stomach")

then 4

else if (s.tumor_tissue_site = "Ovary")

then 5

else if (s.tumor_tissue_site =

"Endometrial") then 6

else if (s.tumor_tissue_site = "Head and

Neck") then 7

else if (s.tumor_tissue_site = "Central

nervous system") then 8

else if (s.tumor_tissue_site = "Colon")

then 0,

else -1,

burden := if (t.impact = "HIGH") then 0.80

else if (t.impact =

"MODERATE") then 0.50

else if (t.impact = "LOW")

then 0.30

else 0.01)}).sumBy({sid,

lbl}, {burden}))}

The output of the program was around 24 000 features. We now look at the performance of

a standard multi-class approach (Section 5.4.1) and a one-vs-rest approach (Section 5.4.2).

5.4 Multi-class Classification: Tumor Site Prediction 74

5.4.1 Multi-class

The aims of this experiment included the investigation of the overhead the pushed filter

added to the total runtime of the program for the multi-class classification task using the

simple multi-label approach. We also aimed to investigate the test accuracy of predicting the

origin of cancer from 9 possible cancer types, using a single-omics approach (occurrences),

comparing our results against an initial model that did not use a feature-selection based filter.

We present below in Figure 5.6 the runtimes of this experiment.

Figure 5.6: Stacked bar plot showing the runtimes of different feature selection methods
of the multi-class experiment from the moment the program is executed until extracting
the features.

We note that this time there are no runtimes for the chi-square filter since it was not used for

this experiment. The longest runtimes are associated with RFE with quite a lot of difference.

We also note that because for this experiment the calculations of the filters are more compli-

cated by nature (9 labels present) the runtimes of Feature Selections are large compared to

the ones from Figures 5.3 and 5.4. We can see that the runtimes of the correlation filter for

5.4 Multi-class Classification: Tumor Site Prediction 75

RFE, MI, and MultiSURF are very small compared to the total runtime while for chi-square

and ANOVA, it is slightly larger.

The first column of the table below displays the results with the correlation feature-selection

based filter pushed but without defining a threshold to drop any features. We also note here

that we could not have used RFE using all features because of the long runtime - even though

the number of features outputted compared to previous experiments was not that big, in con-

trast with the previous experiments the dataset was more complicated due to its multi-label

structure. For this task we pushed the corr+ filter (recall Section 4.2). This meant that

initially we got rid of any features having burden values ≤ 0.01, and then used the correlation

filter. After surviving the initial burden filter, 20 000 features had burden score > 0.03 had

|r| > 0.05, 15 000 had |r| > 0.15 and 2000 had |r| > 0.75. We present the results in the table

below:

Table 12: Multi-class classification - correlation+ partial filter

Method 27000 20000 15000 2000

chi-square 45.2% 40.2% 36.9% 32.8

ANOVA 49.2% 45.5% 43.7% 34.7%

RFE - 40.9% 42.9% 35.9

MI 40.2% 37.2% 37.5 % 33.5

The best performing model was ANOVA 27000 with an accuracy of 49.2%. In this case, the

filter does not help with the test accuracy of any of the models, as with very few exceptions

the accuracies decline when using fewer features. A potential explanation for the relatively

low accuracy first was the task at hand. Multi-class classification with 9 different cancer types

is a challenging task. Furthermore, the total number of samples was 3499, which were split

for training, validation, and testing. For such a challenging task the models perhaps required

more samples to train and by removing features when using the filters, we lose valuable

predictors. The result however is an improvement of the results presented in the original

paper, [37], which was 42.32%.

5.4 Multi-class Classification: Tumor Site Prediction 76

5.4.2 One-vs-rest

The aims of this experiment included the investigation of test and training accuracies of pre-

dicting the origin of cancer from 9 possible cancer types as described before. The one-vs-rest

classification method concerned the same multi-class classification task. The experiment was

performed with the same dataset and program as the one in the previous Section, 5.4.1. For

this experiment, however, the way we made predictions was different. First, we trained 9

binary models, one for each cancer type independently. The only difference in the neural

network we used for this task compared to the multi-class problem was that the loss function

was binary cross-entropy and we used a sigmoid output activation function. Each one of

the 9 models outputted the probability of a patient developing that particular cancer. We

then merged the models to perform our predictions. The models were merged in terms of

the probabilities they outputted and the prediction was made using the classifier with the

highest probability for that particular patient. If for example, the colon model outputted

a probability of 0.85 for a particular patient having colon cancer, while the other 8 models

outputted a probability of < 0.85 for their respective cancer types, the prediction we made

was that the patient had colon cancer. We now discuss the different ways we calculated the

accuracy of the models. The differences concern the way we trained the models.

Training accuracy experiment:

The first task was very similar to the one presented in the original paper, [37]. More specifi-

cally, we used all 3499 samples with a 70% and 30% training and validation split for training.

For each of the 9 classifiers, we used the feature selection methods below to output a feature

set independent of the other classifiers. For example, when we write results for the ANOVA

feature selection method, each time we trained a binary classifier, we ran ANOVA for each

classifier independently. Hence, each binary classifier potentially had a different feature set as

its input (again topk features = 200). Also, what we report below, is the training accuracy.

After we trained each individual classifier on the training dataset, we merged the classifiers as

5.4 Multi-class Classification: Tumor Site Prediction 77

discussed and checked the performance on all 3499 samples. The classifiers were trained for

30 epochs, and the training accuracies reported is an average over 5 runs. Initially, we used

all features (24 000) without any filter pushed. The average for chi-square was 74.6% and for

ANOVA 75.7%.

Source and value filters:

In order to investigate RFE, we decided to initially push the source filter, discussed in Section

4.2. The threshold we used for outputting 12 000 in column 1 was 0.01, and so we filtered out

any genes with impact scores < 0.01, i.e. removed the “LOW” impact genes. For the next two

columns below, the filter used was the value filter (see Section 4.2). We defined a threshold

of 3.6 where 6500 features survived and 7.6 where 3500 features survived. The results shown

below were obtained again from 30 epochs and averaging over 5 runs:

Table 13: Multi-class classification - one-vs-rest - value filter

Method 12000 6500 3500

chi-square 73.7% 65.1% 55.1%

ANOVA 77.0% 66.5% 56.2%

RFE 80.3% 71.7% 62.1%

We see that the filter slightly improved the performance of ANOVA and decreased the per-

formance of chi-square. More importantly, RFE was now able to run outputting the best

accuracy, 80.3% (2% improvement on the result reported in the original paper, [37]). In the

Figure below, 5.7, we display the training accuracy for all the binary classification models on

the same graph. We can see that for training, with relatively few epochs the classifiers are

able to perform well on their respective binary classification task.

5.4 Multi-class Classification: Tumor Site Prediction 78

Figure 5.7: Multi-class classification - one-vs-rest approach. The accuracies displayed
are the training accuracies of all binary classifiers

We also present below in Figure 5.8, the confusion matrix using RFE 12000. The final accu-

racy is the sum of the entries in the diagonal over the total number of entries in the Class

Counts graph. In the diagonal of the Normalized graph, the accuracies for each cancer type

are displayed. False Positives and False Negatives rates are displayed in the off-diagonal

entries.

5.4 Multi-class Classification: Tumor Site Prediction 79

Figure 5.8: Confusion matrix of the RFE model. The cancer types are encoded as
[Colon = 0, Breast = 1, Lung = 2, Kidney = 3, Stomach = 4, Ovary = 5, Endometrial
= 6, Head and Neck = 7, Central nervous system = 8]

5.4 Multi-class Classification: Tumor Site Prediction 80

In contrast with the results we obtained in the binary classification task, from the results

of table 13, we can see that the performance of the models greatly decreases by using this

filter. Biologically, this makes sense. As we filter by increasing the burden threshold, we

are left with genes with high burdens and that implies that the higher the burden the more

mutations and hence the more aggressive cancer they represent. A high burden hence implies

a more individually specific cancer type. Therefore, for the one-vs-rest task, these genes are

not helpful as they provide good information which is cancer-specific and so is not shared

across the rest cancer types. Hence, when merging the results of the binary models, we have

some genes that are very confident in predicting specific cancers for the binary classifiers but

that are not useful when merging together probability results for the cancer types that the

genes are not confident in predicting.

Testing accuracy experiment:

The final experiment we considered was investigating the performance of the one-vs-rest clas-

sifiers for the multi-class classification task in a more standard training and testing setting.

For this experiment, we trained the classifiers using 70% of the data (which was further split

into training and validation sets), and tested on the other 30% of data. We used all features

outputted by the program (24 000) without pushing any filters. Due to time constraints and

the fact that ANOVA feature selection runtime was very short, we performed the experiment

using ANOVA only (which was close to being the best performing model for the training

accuracy experiment and was the best model from the multi-class classification problem in

Section 5.4.1). Initially, as with the case of the training accuracy experiment, we ran ANOVA

for each classifier independently, selecting topk features = 200 for each. The average testing

accuracy over 5 runs and 30 epochs each was 52.7%.

We then considered different feature selection approaches for the same task. Using ANOVA

as the feature selector throughout, we outputted topk features = 20 for each cancer type and

concatenated them together resulting in 180 features before training the binary classifiers. We

then trained them using this common feature set of 180. The average accuracy was 52.0%.

5.4 Multi-class Classification: Tumor Site Prediction 81

We then performed the same experiment but with the common feature set being the same as

the above, but excluding the intersecting features between the binary classifiers, resulting in

a total of 123 features. The average accuracy was 41.2%. Finally, we obtained an accuracy

of 41.8% when running the experiment with the feature set containing only the intersecting

features (21).

The best performing feature set was the one where we trained each classifier independently,

achieving an accuracy of 52.7%. The relatively low accuracy, however, implies that the task

at hand needs a more complicated feature selection method or a different approach when

calculating the mutational burden. Regardless, this accuracy is an improvement compared to

the simpler multi-class classification results (ANOVA with 49.2%) and a 10% improvement

on the results reported in the original paper, [37].

5.5 Gene Enrichment Analysis 82

5.5 Gene Enrichment Analysis

In this section, we present our findings on the analysis of the gene output from the models

in the previous experiments. We selected gene sets from the best performing models for the

prostate and multi-site 10 analysis from above in order to gain more insight into what these

genes say about the biological process and to gain confidence in the feature sets we are creating.

We performed gene set enrichment analysis on these gene sets using WebGestalt, [53]. Gene

set enrichment is a method to measure the correlation of an input gene set to existing gene

sets. We used parameters from the interface of the website specific to our task. We had gene

ontology as a functional database, genome as our reference list, and Over-Representation

Analysis (ORA) for our methods of interest. ORA is a statistical method that determines

whether genes from pre-defined sets (e.g. from the genome list from WebGestalt) are present

more than it would be expected (over-represented) in the data we test. For more details,

we refer the reader to [32]. We provide the categorical organization of the genes within each

set with respect to biological processes, cellular components, and molecular function. We

also discuss gene set enrichment results, noting any gene sets that were identified with False-

Discovery Rate (FDR) ≤ 0.05. 0.05 is a generally accepted threshold in biology. FDR is the

expected proportion of false positives among the rejected hypotheses. For this application,

the null hypothesis is that the gene sets are independent of the biological processes we identify

and the alternative hypothesis is that there is a significant correlation between the gene set

and the biological processes. FDR ≤ 0.05 implies that less than 5% of all tests will result in

false positives, therefore we are more than 95% confident that our results are accurate and

that the gene set is correlated with the biological processes.

5.5.1 Prostate severity with multi-omics

From the experiment in Section 5.3.3, we extracted genes from the best-performing models.

This was from the correlation feature-selection based filter outputting 20 000 features (middle

column of table 10). We analyzed the full output, i.e. all 200 features, of RFE (which

10Multi-class classification

5.5 Gene Enrichment Analysis 83

was the best performing model). We then analyzed the overlap of the output genes from

RFE/ANOVA (best vs second-best model). Finally, we considered the genes outputted by

RFE but excluding the genes overlapping with ANOVA. Recall that each model outputted

200 genes. We found 52 overlapping genes between ANOVA and RFE and therefore 148 genes

identified by RFE only.

The gene enrichment analysis for the full output of RFE (200 genes) did not generate any

high-confidence gene set enrichment scores (all had FDR > 0.05). We did identify two gene

sets that were identified with FDR < 0.05 in the overlapping set of RFE and ANOVA, both of

them specific to metabolic processes. The full set from the overlapping feature set is presented

in Figure 5.9. We discuss the significance of this further in the Discussion, Section 6.

Figure 5.9: Gene set enrichment analysis for overlapping RFE/ANOVA feature sets.
High-confidence associations are in dark blue. Generated by WebGestalt.

The gene ontology classification summary for the overlapping gene set is provided in Figure

5.10. We provide only the overlap since the others did not report high-confidence enrichment

results. The other classification summaries for this and that other method can be found in

the appendix, D. For the overlapping set, we can see that metabolism was identified as the

most represented biological process - consistent with the high-confidence enrichment results.

Cellular components (membrane, nucleus) and molecular functions (protein binding) are con-

sistent with cancer-specific processes. These results suggest that the multi-omics approaches

are able to identify prostate-cancer-specific processes like metabolism as well as features that

are specific to cancer in general.

5.5 Gene Enrichment Analysis 84

Figure 5.10: Represented biological processes, cellular components, and molecular func-
tion categories for the overlapping gene set of ANOVA/RFE. Generated by WebGestalt.

5.5.2 One-vs-rest Tumor Site Prediction

For the best performing model from the tumor site prediction problem, we took the gene set

from the best performing model (ANOVA, partial filter > 0.01) and (ANOVA with no filter).

While the training accuracy was highest with the partial filter, their testing accuracies were the

same within 0.7%. We looked at the overlap between these two feature sets to determine if the

low testing accuracy was related to the feature selection method making random decisions

from an ill-informed feature space. We found 114 overlapping genes, suggesting that the

features selected aren’t just due to random chance. The gene enrichment analysis for the pan-

cancer case study surprisingly, based on what we saw from model performance, had higher

confidence results than the prostate analysis. Ten gene sets were identified with FDR ≤ 0.05,

which are noted in the volcano plot in Figure 5.11. The volcano plot shows the -log of FDR

vs the enrichment ratio, highlighting the degree by which the significant categories stand out

(upper corners).

5.5 Gene Enrichment Analysis 85

Figure 5.11: Volcano plot for the 114 overlapping ANOVA genes used in the one-vs-
rest experiment. High-confidence associations are labeled by definition. Generated by
WebGestalt.

The gene ontology classification summary is provided in 5.12. 89 out of the 114 genes were

successfully mapped to publically available gene sets, with relatively low amounts of classifi-

cations. There is a high representation of genes in many biological processes that one would

expect to be associated with cancer, such as biological regulation and developmental processes.

This is true for cellular component categories as well, with nucleus and membrane being the

most represented group. Finally, the most represented molecular function is protein-binding

which is also in line with cancer since many systems will have disruptions in regulation due to

binding issues. These results highlight how the ANOVA method was able to pick up processes

that are shared across cancer types.

5.5 Gene Enrichment Analysis 86

Figure 5.12: Represented biological processes, cellular components, and molecular func-
tion categories for the 114 overlapping ANOVA genes used in one-vs-rest.

Section summary:

From the runtimes experiments we performed, we first showed that pushing feature-selection

based filters from UDFs into the NRC program speeds up feature extraction for the majority

of feature selection methods we considered. Second, they enable RFE to run by reducing the

large feature space. Moreover, the filters add minimal overhead to the total runtime of the

NRC program. The best performing model for the binary classification task of predicting

the severity of prostate cancer was 97.8% using RFE and a multi-omics approach with the

correlation filter pushed. Comparing for the multi-class classification task, RFE was the best

performing model for the training accuracy experiment with an accuracy of 80.3%, while for

the testing accuracy experiment ANOVA outputted an accuracy of 52.7%. We then analyzed

features outputted by the models by performing gene enrichment analysis. For the binary

classification task (severity of prostate cancer), we discovered genes with correlation to specific

metabolic processes from the overlapping set of features from the two best performing models,

RFE and ANOVA. For the multi-class classification task, from the one-vs-rest approach, we

successfully mapped gene sets to publically available genes sets and associated them with

cancer-specific biological processes such as cell regulation. Finally, we showed that for all the

binary classification methods we considered, we increased the performance (test accuracy)

5.5 Gene Enrichment Analysis 87

of the best performing baseline model with the filters we used, with the highest increase in

performance being 16.9%.

88

6 Discussion and Future Work

We now discuss some key points, findings, limitations, and challenges we faced throughout

the thesis. We will focus the discussion on the experimental results from Section 5.

6.1 Discussion

From the runtime bar plots in Figures 5.3, 5.4 and 5.6 we can see that the runtimes for the

feature-selection based filters, chi-square and correlation, are very small compared to the total

runtime. The total runtime includes the time taken for the NRC program to run until the

time the features are selected by the feature selection methods, NRC + Filter + Feature

selection. The longer runtimes occur when extracting the features, mainly using RFE, MI,

and MultiSURF. We can therefore see that the feature-selection based filters add minimal

overhead for the training pipeline runtime and that for many experiments (e.g. the multi-

omics experiment in Section 5.3.3) they also improve the performance of the models. For all

the experiments, they also enable the use of RFE which ends up being the best performing

model on many occasions.

In experiments involving point mutations, for example in Section 5.3.1, we noticed that the

correlation filter was not able to select features in a uniform way, outputting skewed results

with many features having correlations very close to +1 or -1 (within 0.01). Recall the

equation of correlation:

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

To provide insight as to why this was the case, we note that since there are many features with

burden values very close to 0 (features with no impact values getting a value of 0.01 from the

program) the moduli of the numerator and the denominator of the calculation above are very

similar. Since the mean of each gene, x̄, is very small for many genes having small burden

scores, this implies that (xi − x̄) is a very small number as well, and hence the outcomes of

6.1 Discussion 89

the two calculations:
∑n

i=1(xi− x̄) and
√∑n

i=1(xi − x̄)2 have very similar moduli. Therefore,

the calculation boils down to
∑n

i=1(yi−ȳ)√∑n
i=1(yi−ȳ)2

. Because the values of the labels are in many

instances 0, that means that in many cases the modulus of the fraction is also very close to

1. Therefore, overall outputting a correlation value very close to 1 or -1. Even though the

correlation between point mutations and their burden (what we just described) isn’t as infor-

mative, mixing with gene expression (i.e. Fpkm) values is beneficial. As we saw in Table 8,

we can split features more precisely when using gene expression values compared to mutation

impact values (occurrences). Impact burden values are additive for a gene but gene expression

has a one-to-one correspondence to a gene (one Fpkm value per gene). So, correlation filter

methods are not as strong when using impact values and therefore when integrating more

datasets, which is why we can’t differentiate datasets very well with the correlation filter for

the multi-omics task. Despite this challenge, as we show in experiment 5.3.2, gene expression

does not perform well on its own compared to impact values, 5.3.1, so impact values on their

own appear to be more useful for the binary classification task on prostate cancer severity.

However, the fact that the best performing model is observed when using a multi-omics ap-

proach, it implies that the correlation filter we push was very vital on the difference in the

performance of the model.

From the results of the experiments, we note that the best performing model for the binary

classification task of predicting the severity of prostate cancer is RFE with 20 000 features

with an accuracy of 97.8%. The fact that this model was able to run because of the correlation

feature-selection based filter we used highlights the importance of the filter. Furthermore, the

fact that the GMB calculation for this experiment was done with a multi-omics approach, by

combining occurrences and gene expression, shows the significance of integrating differ-

ent data sources and motivates further exploration on using such models to identify complex

patterns.

The best performing model for the training accuracy experiment of the multi-class classifica-

tion problem is from the one-vs-rest approach. Namely, RFE with 12 000 features with an

accuracy of 80.3% where the value filter was pushed. The value filter was used because the

6.1 Discussion 90

correlation and chi-square filter took too long to execute owing to the small cluster size of

the computer node. For the testing accuracy experiment of the multi-class classification task

(again one-vs-rest approach), ANOVA is the best performing model using all the features, with

an accuracy of 52.7%. The multi-class classification task we considered however is a challeng-

ing task by its nature. Feature selection methods from Python packages, Python.sklearn

[46], work by binarizing the target variable if more than 2 labels are present. The fact that

this task involves 9 labels results in even more estimations for calculating feature importance

scores. In addition, the sample size we used was fairly small, with 3499 samples. Therefore,

methods that are capable of taking into account the complexities of the biological system, the

relationship between and across cancers, and gene-gene relationships will perform better to

such challenging tasks. This will mean determining more advanced filters that can be pushed

for more complicated feature selection methods. The gene enrichment analysis below further

supports this claim.

For the prostate severity problem (binary classification), though we do not see many high-

confidence gene sets in the enrichment analysis, we do see categories that are different from

what we have seen in the pan-cancer (multi-class classification) analysis. This implies that

we are definitely identifying genes that are important for prostate cancer, which is backed

up by model performance. The interesting thing is that the overlap of the top-performing

models (RFE and ANOVA) was the only gene set that provided a high-confidence association

to a known gene set, which was related to metabolic processes. This is supported by recent

research which shows that there are specific metabolic processes driving tumor development in

prostate cancer, where metabolic drugs have been suggested as a treatment option for prostate

cancer [34]. The other gene sets that do not have high confidence in enrichment analysis, but

high performance in prediction, suggest that the important genes are associated with many

biological systems but do not come across in a gene set enrichment. The features should be

analyzed with respect to all the systems involved rather than looking for multiple overlapping

genes within the same biological system. This also suggests that multi-omics approaches that

will consider more information from the system as a whole will be beneficial for predicting

6.1 Discussion 91

prostate severity, and the high accuracy of our multi-omics model further supports this.

For the multi-class classification task, 5.4.2, as noted in the experiments, ANOVA is able to

pick up many biological processes, cellular components, and molecular functions that are com-

mon in cancer. One interesting process that stood out was the high categorization of nucleus

and membrane in the cellular component category. The nuclei of cancer cells are often much

larger and darker than non-cancerous cells and are used as a cancer diagnosis and progression

marker in tumor tissue slides. Further, it has recently been shown that the nuclear envelope

plays an important role in cancer given its role in cell division and gene regulation [30]. If we

consider the categorical results in combination with the accuracies reported in one-vs-rest, the

results suggest that the feature selection methods are identifying features that are important

across all cancers. The best performing model for the one-vs-rest task, ANOVA, works by

reducing the variance between the features and the target by selecting features that discrim-

inate the most between the two. This is done for each binary classifier. These features are

the ones that are more “easy” to pick up, and so are shared across different cancer types, as

they are common to all.

The patterns we see in the selection of features common across all cancer type in the multi-

class problem also explains why the pan-cancer feature selection, which leads to poor model

performance, has higher-confidence features in gene enrichment than for the prostate cancer

analysis, which has high model performance. The feature selection for pan-cancer understands

the problem as if it is faced with an easier task - to identify features that are associated with

cancer tissues, and ends up doing well. This, however, is masking within cancer-specific

features that we need to tackle for the multi-class classification task. The prostate cancer

analysis, however, has a more specific question - find a specific set of genes that tells us how

severe the cancer is, and as it turns out the feature selection methods can do this and produce

high performing models, but the relationships between the genes in these feature sets are less

clear. This is likely because their relationship is not one overarching system (like cancer in the

multi-class problem) at play. The significant features that stand out in the prostate analysis

are forming more complex relationships that span many processes, making it impossible for

6.2 Limitations and Future Work 92

gene set enrichment methods to identify their relationships with high confidence.

We see that the feature-selection based filters provide minimal overhead for the training

pipeline and overall improve the performance of our models. Overall, we see that the binary

classification task benefits from the pushed filters but more exploration is needed for the

multi-class prediction. The multi-class prediction task is a much harder task, and through

the gene enrichment analysis, we showed that even though our model was able to pick up

cancer-specific biological processes, the performance of the model in terms of test accuracy is

still relatively low.

6.2 Limitations and Future Work

We now discuss some limitations of our approach and suggest improvements. We first note that

the results we present were tested on a single dataset (TCGA), and hence further experiments

need to be run using a variety of datasets to increase the confidence of our results. Moreover,

the experiments need to be executed on a larger cluster in order to assess scalability of UDF-

based filters since they benefit from the computer node distribution as discussed in Section

4.1.3. This will also benefit situations where we were unable to run programs on larger datasets

and needed to use source and value filters to reduce the initial feature space. Also, we recall

in Figure 3.2, that Feature extraction happens in external libraries. The filters we introduce,

feature-selection based filters and source and value filters (recall Section 4.1), are applied to the

materialized results of the NRC program representing feature matrix construction. This allows

us to implement the filters, previously only done locally, to a distributed setting. Both the

application of the filter and the distributed implementation of the feature-selection based filter

will speed up the total execution of the NRC program. We suggest further investigation to

push more of the feature-selection based filter calculation into the NRC program representing

the feature matrix construction to speed up matrix construction.

More specific to the feature-selection use case, the binarization of target variables is not yet

implemented in the filters we introduced. For the chi-square feature-selection based filter for

the multi-class classification, this meant that we had to manually code the binarization. We

6.2 Limitations and Future Work 93

therefore suggest automating the binarization as that will greatly increase the use cases of chi-

square and remove the burden from programmers to manually binarize the target variable.

Finally, we note that the filters we implement and the experiments we run are only done

for the shredded pipeline. This is because past work has shown that shredding will always

outperform the standard compilation route [37]. Investigating this for the standard pipeline

as well might identify interesting feature-based optimizations that can be applied regardless

of the underlying representation.

In addition to the suggestions above, we now discuss areas of future work that we think will

be beneficial for UDFs and biomedical classification tasks. First, we discuss extensions for

the UDFs, such as extending UDFs to support Integrated Development Environment, IDEs.

These might involve processes such as exception handling, memory management, and Web

UI (User Interface) to allow the user to monitor the pipeline of the UDF execution during

the time of execution. This will allow users to have a better understanding of the runtimes

of processes executed by the UDFs and manage them more efficiently. Recent research in the

area of UDFs has already implemented some of these, such as the Tuplex analytics framework

[44].

We now suggest further investigations regarding the applications of TraNCE and biomedical

classification tasks:

• We suggest investigating other prediction tasks (even for different diseases), both binary

and multi-class, to check whether the performance patterns we saw in our experiments

are common with the new tasks. It will be interesting to investigate the performance of

the feature-selection based filters for other tasks and see whether we can draw similar

conclusions for tasks not relating to cancer

• Due to the promising results from the multi-omics approach for binary classification

tasks relating to cancer, we suggest integrating more or different data sources to tackle

the more challenging multi-class classification task.

• Following our discussion on the challenges the feature selection methods we considered

6.2 Limitations and Future Work 94

face for the multi-class classification task, we suggest different approaches that use more

recent and sophisticated methods for extracting features from large feature spaces.

These might include graph embedding approaches, such as Graph Neural Networks

(GNNs), that have recently shown very promising results in biomedical analyses [45,

33].

95

7 Conclusions

In this thesis, we have successfully extended the query compilation framework TraNCE, by

extending NRC with statistical operations through the integration of UDFs to support them.

Furthermore, we have successfully implemented a hint optimization which enables users defin-

ing the UDFs to define thresholds and push filters in order to optimize the execution of the

UDFs and reduce the large feature space that often exists in biomedical tasks. We have also

managed to improve testing accuracy benchmarks for the binary classification task of predict-

ing the severity of prostate cancer by using a multi-omics approach and the training accuracy

benchmark for the multi-class classification task. Finally, we have analyzed gene sets and

their relevance in biological processes and concluded interesting findings.

References 96

References

[1] Steven D. Carson. “BASIC program for non-parametric fitting of user-defined

functions to experimental data with plotting of results”. In: Computer Methods

and Programs in Biomedicine 29.4 (1989), pp. 229–234. issn: 0169-2607. doi:

https://doi.org/10.1016/0169-2607(89)90107-7. url: https://www.

sciencedirect.com/science/article/pii/0169260789901077.

[2] Limsoon Wong. “Querying nested collections”. In: (1994). url: https://repository.

upenn.edu/dissertations/AAI9503855.

[3] Jan Van den Bussche. Simulation of the Nested Relational Algebra By the Flat

Relational Algebra, With an Application to the Complexity of Evaluating Powerset

Algebra Expressions. 1999.

[4] Leonidas Fegaras and David Maier. “Optimizing Object Queries Using an Effec-

tive Calculus”. In: ACM Trans. Database Syst. 25.4 (Dec. 2000), pp. 457–516.

issn: 0362-5915. doi: 10.1145/377674.377676. url: https://doi.org/10.

1145/377674.377676.

[5] LIANGYOU CHEN and HASAN M. JAMIL. “ON USING REMOTE USER

DEFINED FUNCTIONS AS WRAPPERS FOR BIOLOGICAL DATABASE

INTEROPERABILITY”. In: International Journal of Cooperative Information

Systems 12.02 (2003), pp. 161–195. doi: 10.1142/S021884300300070X. eprint:

https://doi.org/10.1142/S021884300300070X. url: https://doi.org/10.

1142/S021884300300070X.

[6] Jianping Hua et al. “Optimal number of features as a function of sample size

for various classification rules”. In: Bioinformatics 21.8 (Nov. 2004), pp. 1509–

1515. issn: 1367-4803. doi: 10.1093/bioinformatics/bti171. eprint: https:

https://doi.org/https://doi.org/10.1016/0169-2607(89)90107-7
https://www.sciencedirect.com/science/article/pii/0169260789901077
https://www.sciencedirect.com/science/article/pii/0169260789901077
https://repository.upenn.edu/dissertations/AAI9503855
https://repository.upenn.edu/dissertations/AAI9503855
https://doi.org/10.1145/377674.377676
https://doi.org/10.1145/377674.377676
https://doi.org/10.1145/377674.377676
https://doi.org/10.1142/S021884300300070X
https://doi.org/10.1142/S021884300300070X
https://doi.org/10.1142/S021884300300070X
https://doi.org/10.1142/S021884300300070X
https://doi.org/10.1093/bioinformatics/bti171
https://academic.oup.com/bioinformatics/article-pdf/21/8/1509/691983/bti171.pdf
https://academic.oup.com/bioinformatics/article-pdf/21/8/1509/691983/bti171.pdf

References 97

//academic.oup.com/bioinformatics/article-pdf/21/8/1509/691983/

bti171.pdf. url: https://doi.org/10.1093/bioinformatics/bti171.

[7] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on

Large Clusters”. In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. issn: 0001-

0782. doi: 10.1145/1327452.1327492. url: https://doi.org/10.1145/

1327452.1327492.

[8] Ivan A. Adzhubei et al. “A method and server for predicting damaging mis-

sense mutations”. eng. In: Nature methods 7.4 (Apr. 2010). nmeth0410-248[PII],

pp. 248–249. issn: 1548-7105. doi: 10.1038/nmeth0410-248. url: https://

doi.org/10.1038/nmeth0410-248.

[9] Alexander Alexandrov et al. “Massively Parallel Data Analysis with PACTs on

Nephele”. In: Proc. VLDB Endow. 3.1–2 (Sept. 2010), pp. 1625–1628. issn: 2150-

8097. doi: 10.14778/1920841.1921056. url: https://doi.org/10.14778/

1920841.1921056.

[10] Idan Menashe et al. “Pathway analysis of breast cancer genome-wide association

study highlights three pathways and one canonical signaling cascade”. eng. In:

Cancer research 70.11 (June 2010). 0008-5472.CAN-09-4502[PII], pp. 4453–4459.

issn: 1538-7445. doi: 10.1158/0008-5472.CAN-09-4502. url: https://doi.

org/10.1158/0008-5472.CAN-09-4502.

[11] Michael F. Ochs. “Genomics Data Analysis Pipelines”. In: Biomedical Informatics

for Cancer Research. Ed. by Michael F. Ochs, John T. Casagrande, and Ramana

V. Davuluri. Boston, MA: Springer US, 2010, pp. 117–137. isbn: 978-1-4419-5714-

6. doi: 10.1007/978-1-4419-5714-6_6. url: https://doi.org/10.1007/978-

1-4419-5714-6_6.

https://academic.oup.com/bioinformatics/article-pdf/21/8/1509/691983/bti171.pdf
https://academic.oup.com/bioinformatics/article-pdf/21/8/1509/691983/bti171.pdf
https://academic.oup.com/bioinformatics/article-pdf/21/8/1509/691983/bti171.pdf
https://doi.org/10.1093/bioinformatics/bti171
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.14778/1920841.1921056
https://doi.org/10.14778/1920841.1921056
https://doi.org/10.14778/1920841.1921056
https://doi.org/10.1158/0008-5472.CAN-09-4502
https://doi.org/10.1158/0008-5472.CAN-09-4502
https://doi.org/10.1158/0008-5472.CAN-09-4502
https://doi.org/10.1007/978-1-4419-5714-6_6
https://doi.org/10.1007/978-1-4419-5714-6_6
https://doi.org/10.1007/978-1-4419-5714-6_6

References 98

[12] Matei Zaharia et al. “Spark: Cluster Computing with Working Sets”. In: USA:

USENIX Association, 2010.

[13] Peilin Jia, Yang Liu, and Zhongming Zhao. “Integrative pathway analysis of

genome-wide association studies and gene expression data in prostate cancer”.

eng. In: BMC systems biology 6 Suppl 3.Suppl 3 (2012). 1752-0509-6-S3-S13[PII],

S13–S13. issn: 1752-0509. doi: 10.1186/1752-0509-6-S3-S13. url: https:

//doi.org/10.1186/1752-0509-6-S3-S13.

[14] Vijay K. Ramanan et al. “Pathway analysis of genomic data: concepts, meth-

ods, and prospects for future development”. In: Trends in Genetics 28.7 (2012),

pp. 323–332. issn: 0168-9525. doi: https://doi.org/10.1016/j.tig.2012.

03.004. url: https://www.sciencedirect.com/science/article/pii/

S0168952512000364.

[15] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstrac-

tion for In-Memory Cluster Computing”. In: 9th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 12). San Jose, CA: USENIX

Association, Apr. 2012, pp. 15–28. isbn: 978-931971-92-8. url: https://www.

usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia.

[16] Jiaxing Zhang et al. “Optimizing Data Shuffling in Data-Parallel Computation

by Understanding User-Defined Functions”. In: 9th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 12). San Jose, CA: USENIX

Association, Apr. 2012, pp. 295–308. isbn: 978-931971-92-8. url: https://www.

usenix.org/conference/nsdi12/technical-sessions/presentation/zhang.

[17] Claudia Beleites et al. “Sample size planning for classification models”. In: Ana-

lytica Chimica Acta 760 (2013), pp. 25–33. issn: 0003-2670. doi: https://doi.

https://doi.org/10.1186/1752-0509-6-S3-S13
https://doi.org/10.1186/1752-0509-6-S3-S13
https://doi.org/10.1186/1752-0509-6-S3-S13
https://doi.org/https://doi.org/10.1016/j.tig.2012.03.004
https://doi.org/https://doi.org/10.1016/j.tig.2012.03.004
https://www.sciencedirect.com/science/article/pii/S0168952512000364
https://www.sciencedirect.com/science/article/pii/S0168952512000364
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zhang
https://doi.org/https://doi.org/10.1016/j.aca.2012.11.007
https://doi.org/https://doi.org/10.1016/j.aca.2012.11.007

References 99

org/10.1016/j.aca.2012.11.007. url: https://www.sciencedirect.com/

science/article/pii/S0003267012016479.

[18] Kristian Cibulskis et al. “Sensitive detection of somatic point mutations in impure

and heterogeneous cancer samples”. In: Nature Biotechnology 31.3 (Mar. 2013),

pp. 213–219. issn: 1546-1696. doi: 10.1038/nbt.2514. url: https://doi.org/

10.1038/nbt.2514.

[19] “The cancer genome atlas pan-cancer analysis project”. English (US). In: Nature

Genetics 45.10 (Oct. 2013), pp. 1113–1120. issn: 1061-4036. doi: 10.1038/ng.

2764.

[20] Chen Meng et al. “A multivariate approach to the integration of multi-omics

datasets”. In: BMC Bioinformatics 15.1 (May 2014), p. 162. issn: 1471-2105.

doi: 10.1186/1471-2105-15-162. url: https://doi.org/10.1186/1471-

2105-15-162.

[21] Adam Auton et al. “A global reference for human genetic variation”. English

(US). In: Nature 526.7571 (Sept. 2015), pp. 68–74. issn: 0028-0836. doi: 10.

1038/nature15393.

[22] William McLaren et al. “The Ensembl Variant Effect Predictor”. In: Genome

Biology 17.1 (June 2016), p. 122. issn: 1474-760X. doi: 10.1186/s13059-016-

0974-4. url: https://doi.org/10.1186/s13059-016-0974-4.

[23] John H. Phan et al. “Integration of Multi-Modal Biomedical Data to Predict Can-

cer Grade and Patient Survival”. eng. In: ... IEEE-EMBS International Confer-

ence on Biomedical and Health Informatics. IEEE-EMBS International Confer-

ence on Biomedical and Health Informatics 2016 (Feb. 2016). PMC4969000[pmcid],

pp. 577–580. issn: 2641-3590. doi: 10.1109/BHI.2016.7455963. url: https:

//doi.org/10.1109/BHI.2016.7455963.

https://doi.org/https://doi.org/10.1016/j.aca.2012.11.007
https://doi.org/https://doi.org/10.1016/j.aca.2012.11.007
https://www.sciencedirect.com/science/article/pii/S0003267012016479
https://www.sciencedirect.com/science/article/pii/S0003267012016479
https://doi.org/10.1038/nbt.2514
https://doi.org/10.1038/nbt.2514
https://doi.org/10.1038/nbt.2514
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/ng.2764
https://doi.org/10.1186/1471-2105-15-162
https://doi.org/10.1186/1471-2105-15-162
https://doi.org/10.1186/1471-2105-15-162
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1109/BHI.2016.7455963
https://doi.org/10.1109/BHI.2016.7455963
https://doi.org/10.1109/BHI.2016.7455963

References 100

[24] Apache Zeppelin. June 2017. url: https://zeppelin.apache.org.

[25] Zhaoyi Chen et al. “Trends in Gene Expression Profiling for Prostate Cancer Risk

Assessment: A Systematic Review”. eng. In: Biomedicine hub 2.2 (May 2017).

bmh-0002-0001[PII], pp. 1–15. issn: 2296-6870. doi: 10.1159/000472146. url:

https://doi.org/10.1159/000472146.

[26] Astrid Rheinländer, Ulf Leser, and Goetz Graefe. “Optimization of Complex

Dataflows with User-Defined Functions”. In: ACM Comput. Surv. 50.3 (May

2017). issn: 0360-0300. doi: 10.1145/3078752. url: https://doi.org/10.

1145/3078752.

[27] Huijskens Thomas. Mutual information-based feature selection. https://thuijskens.

github.io/2017/10/07/feature-selection/. Oct. 2017.

[28] Danilo Bzdok et al. “Prediction and inference diverge in biomedicine: Simulations

and real-world data”. In: bioRxiv (2018). doi: 10.1101/327437. eprint: https:

//www.biorxiv.org/content/early/2018/05/21/327437.full.pdf. url:

https://www.biorxiv.org/content/early/2018/05/21/327437.

[29] Ryan J. Urbanowicz et al. “Benchmarking relief-based feature selection methods

for bioinformatics data mining”. In: Journal of Biomedical Informatics 85 (2018),

pp. 168–188. issn: 1532-0464. doi: https://doi.org/10.1016/j.jbi.2018.

07.015. url: https://www.sciencedirect.com/science/article/pii/

S1532046418301412.

[30] Maria Alvarado-Kristensson and Catalina Ana Rosselló. “The Biology of the Nu-

clear Envelope and Its Implications in Cancer Biology”. eng. In: International

journal of molecular sciences 20.10 (May 2019). ijms20102586[PII], p. 2586. issn:

1422-0067. doi: 10.3390/ijms20102586. url: https://doi.org/10.3390/

ijms20102586.

https://zeppelin.apache.org
https://doi.org/10.1159/000472146
https://doi.org/10.1159/000472146
https://doi.org/10.1145/3078752
https://doi.org/10.1145/3078752
https://doi.org/10.1145/3078752
https://thuijskens.github.io/2017/10/07/feature-selection/
https://thuijskens.github.io/2017/10/07/feature-selection/
https://doi.org/10.1101/327437
https://www.biorxiv.org/content/early/2018/05/21/327437.full.pdf
https://www.biorxiv.org/content/early/2018/05/21/327437.full.pdf
https://www.biorxiv.org/content/early/2018/05/21/327437
https://doi.org/https://doi.org/10.1016/j.jbi.2018.07.015
https://doi.org/https://doi.org/10.1016/j.jbi.2018.07.015
https://www.sciencedirect.com/science/article/pii/S1532046418301412
https://www.sciencedirect.com/science/article/pii/S1532046418301412
https://doi.org/10.3390/ijms20102586
https://doi.org/10.3390/ijms20102586
https://doi.org/10.3390/ijms20102586

References 101

[31] Laura Fancello et al. “Tumor mutational burden quantification from targeted gene

panels: major advancements and challenges”. In: Journal for ImmunoTherapy of

Cancer 7.1 (2019). doi: 10.1186/s40425-019-0647-4. eprint: https://jitc.

bmj.com/content/7/1/183.full.pdf. url: https://jitc.bmj.com/content/

7/1/183.

[32] Yuxing Liao et al. “WebGestalt 2019: gene set analysis toolkit with revamped

UIs and APIs”. In: Nucleic Acids Research 47.W1 (May 2019), W199–W205.

issn: 0305-1048. doi: 10.1093/nar/gkz401. eprint: https://academic.oup.

com/nar/article- pdf/47/W1/W199/28880211/gkz401.pdf. url: https:

//doi.org/10.1093/nar/gkz401.

[33] Jaechang Lim et al. “Predicting Drug–Target Interaction Using a Novel Graph

Neural Network with 3D Structure-Embedded Graph Representation”. In: Jour-

nal of Chemical Information and Modeling 59.9 (Sept. 2019), pp. 3981–3988. issn:

1549-9596. doi: 10.1021/acs.jcim.9b00387. url: https://doi.org/10.1021/

acs.jcim.9b00387.

[34] David A. Bader and Sean E. McGuire. “Tumour metabolism and its unique prop-

erties in prostate adenocarcinoma”. In: Nature Reviews Urology 17.4 (Apr. 2020),

pp. 214–231. issn: 1759-4820. doi: 10.1038/s41585-020-0288-x. url: https:

//doi.org/10.1038/s41585-020-0288-x.

[35] Tudor Baetu. Causal Inference in Biomedical Research. 2020. url: http : / /

philsci-archive.pitt.edu/17674/.

[36] Andrea Bommert et al. “Benchmark for filter methods for feature selection in

high-dimensional classification data”. In: Computational Statistics and Data Anal-

ysis 143 (2020), p. 106839. issn: 0167-9473. doi: https://doi.org/10.1016/

https://doi.org/10.1186/s40425-019-0647-4
https://jitc.bmj.com/content/7/1/183.full.pdf
https://jitc.bmj.com/content/7/1/183.full.pdf
https://jitc.bmj.com/content/7/1/183
https://jitc.bmj.com/content/7/1/183
https://doi.org/10.1093/nar/gkz401
https://academic.oup.com/nar/article-pdf/47/W1/W199/28880211/gkz401.pdf
https://academic.oup.com/nar/article-pdf/47/W1/W199/28880211/gkz401.pdf
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1021/acs.jcim.9b00387
https://doi.org/10.1021/acs.jcim.9b00387
https://doi.org/10.1021/acs.jcim.9b00387
https://doi.org/10.1038/s41585-020-0288-x
https://doi.org/10.1038/s41585-020-0288-x
https://doi.org/10.1038/s41585-020-0288-x
http://philsci-archive.pitt.edu/17674/
http://philsci-archive.pitt.edu/17674/
https://doi.org/https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/https://doi.org/10.1016/j.csda.2019.106839

References 102

j.csda.2019.106839. url: https://www.sciencedirect.com/science/

article/pii/S016794731930194X.

[37] Jaclyn Smith et al. “Scalable Analysis of Multi-Modal Biomedical Data”. In:

bioRxiv (2020). doi: 10.1101/2020.12.14.422781. eprint: https://www.

biorxiv.org/content/early/2020/12/15/2020.12.14.422781.full.pdf.

url: https://www.biorxiv.org/content/early/2020/12/15/2020.12.14.

422781.

[38] Jaclyn Smith et al. Scalable Querying of Nested Data. 2020. arXiv: 2011.06381

[cs.DB].

[39] Indhupriya Subramanian et al. “Multi-omics Data Integration, Interpretation,

and Its Application”. In: Bioinformatics and Biology Insights 14 (2020). PMID:

32076369, p. 1177932219899051. doi: 10.1177/1177932219899051. eprint: https:

//doi.org/10.1177/1177932219899051. url: https://doi.org/10.1177/

1177932219899051.

[40] Ryan J. Urbanowicz et al. “A Rigorous Machine Learning Analysis Pipeline for

Biomedical Binary Classification: Application in Pancreatic Cancer Nested Case-

control Studies with Implications for Bias Assessments”. In: CoRR abs/2008.12829

(2020). arXiv: 2008.12829. url: https://arxiv.org/abs/2008.12829.

[41] Expression Atlas - Fpkm. Jan. 2021. url: https://www.ebi.ac.uk/gxa/FAQ.

html.

[42] Elizabeth Mart́ınez-Pérez, Miguel Angel Molina-Vila, and Cristina Marino-Buslje.

“Panels and models for accurate prediction of tumor mutation burden in tumor

samples”. In: npj Precision Oncology 5.1 (Apr. 2021), p. 31. issn: 2397-768X. doi:

10.1038/s41698-021-00169-0. url: https://doi.org/10.1038/s41698-021-

00169-0.

https://doi.org/https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/https://doi.org/10.1016/j.csda.2019.106839
https://www.sciencedirect.com/science/article/pii/S016794731930194X
https://www.sciencedirect.com/science/article/pii/S016794731930194X
https://doi.org/10.1101/2020.12.14.422781
https://www.biorxiv.org/content/early/2020/12/15/2020.12.14.422781.full.pdf
https://www.biorxiv.org/content/early/2020/12/15/2020.12.14.422781.full.pdf
https://www.biorxiv.org/content/early/2020/12/15/2020.12.14.422781
https://www.biorxiv.org/content/early/2020/12/15/2020.12.14.422781
https://arxiv.org/abs/2011.06381
https://arxiv.org/abs/2011.06381
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1177/1177932219899051
https://arxiv.org/abs/2008.12829
https://arxiv.org/abs/2008.12829
https://www.ebi.ac.uk/gxa/FAQ.html
https://www.ebi.ac.uk/gxa/FAQ.html
https://doi.org/10.1038/s41698-021-00169-0
https://doi.org/10.1038/s41698-021-00169-0
https://doi.org/10.1038/s41698-021-00169-0

References 103

[43] One in ten rule. Feb. 2021. url: https://en.wikipedia.org/wiki/One_in_

ten_rule.

[44] Leonhard Spiegelberg et al. “Tuplex: Data Science in Python at Native Code

Speed”. In: Proceedings of the 2021 International Conference on Management

of Data. SIGMOD/PODS ’21. Virtual Event, China: Association for Computing

Machinery, 2021, pp. 1718–1731. isbn: 9781450383431. doi: 10.1145/3448016.

3457244. url: https://doi.org/10.1145/3448016.3457244.

[45] Juexin Wang et al. “scGNN is a novel graph neural network framework for single-

cell RNA-Seq analyses”. In: Nature Communications 12.1 (Mar. 2021), p. 1882.

issn: 2041-1723. doi: 10.1038/s41467-021-22197-x. url: https://doi.org/

10.1038/s41467-021-22197-x.

[46] Feature selection. url: https://scikit-learn.org/stable/modules/feature_

selection.html.

[47] pandas dataframe pivot. https://pandas.pydata.org/docs/reference/api/

pandas.DataFrame.pivot.html. Accessed: 2021-08-19.

[48] TraNCE Github UDF branch. url: https://github.com/jacmarjorie/trance/

tree/udf_test/compiler/udfs.

[49] Transforming Nested Collections Efficiently: a framework for processing nested

collection queries. https://github.com/jacmarjorie/trance.

[50] Transforming Nested Collections Efficiently: a framework for processing nested

collection queries. https://github.com/jacmarjorie/trance/blob/udf_

test/compiler/src/main/scala/framework/optimize/Optimizer.scala.

[51] UK biobank. https://www.ukbiobank.ac.uk/.

[52] Using skrebate. url: https://epistasislab.github.io/scikit- rebate/

using/.

https://en.wikipedia.org/wiki/One_in_ten_rule
https://en.wikipedia.org/wiki/One_in_ten_rule
https://doi.org/10.1145/3448016.3457244
https://doi.org/10.1145/3448016.3457244
https://doi.org/10.1145/3448016.3457244
https://doi.org/10.1038/s41467-021-22197-x
https://doi.org/10.1038/s41467-021-22197-x
https://doi.org/10.1038/s41467-021-22197-x
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pivot.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pivot.html
https://github.com/jacmarjorie/trance/tree/udf_test/compiler/udfs
https://github.com/jacmarjorie/trance/tree/udf_test/compiler/udfs
https://github.com/jacmarjorie/trance/blob/udf_test/compiler/src/main/scala/framework/optimize/Optimizer.scala
https://github.com/jacmarjorie/trance/blob/udf_test/compiler/src/main/scala/framework/optimize/Optimizer.scala
https://www.ukbiobank.ac.uk/
https://epistasislab.github.io/scikit-rebate/using/
https://epistasislab.github.io/scikit-rebate/using/

References 104

[53] WEB-based GEne SeT AnaLysis Toolkit. url: http://www.webgestalt.org/.

http://www.webgestalt.org/

105

Appendices

Appendix A Feature Selection Runtimes

We note that for the analysis below, the dataset was sliced randomly to output the required

number of features since the features to be input to the feature selection methods did not

matter, as we were merely testing the runtime of the filter. We now present the results of

the experiment performed for all feature selection methods with a varying number of features

and their associated runtimes, where s denotes seconds and m denotes minutes:

Table 14: Feature selection methods runtimes

Method 55000 40000 30000 20000 10000 5000

Chi-square 3 s 2 s 2 s 1 s < 1 s < 1s

ANOVA 5 s 3 s 2 s 1 s < 1 s < 1s

RFE > 25 m > 25 m 20 m s 10 m 60 s 10 s

MI 5.5 m 3.5 m 2.5 m 1.4 m 1 m 20 s

MultiSURF 7 m 4 m 3 m 2.6 m 2.1 m 1.1 m

We can see that after inputting around 35000 features to RFE, the runtime exceeds our ac-

cepted time (25 minutes), and in many occasions the Zeppelin interpreter crashes. This meant

that for any queries outputting more than 35000 features, a local filter had to be pushed to

filter out some features otherwise RFE could not have been used. Chi-square and ANOVA ran

almost instantly regardless of the number of features input. MI’s and MultiSURF’s runtimes

were higher, however, did not exceed 7 minutes even when using a big number of features.

Appendix B Optimizations for Multi-omics Queries

When writing programs in NRC, it is important to make sure they are optimized so that

when they are executed in the generated code in the Zeppelin notebooks, they run as fast

106

as possible. We note improvements in defining a sequential set of programs that work in

pipeline fashion, which are particularly important for multi-omics programs. Here, we can

build up intermediate feature matrices based on one or more datasets and then integrate

others downstream. This proved beneficial when aggregating multiple datasets, i.e. build up

a feature matrix with one dataset before integrating the next. These intermediate matrices

reduce the cost of performing multi-modal aggregation. The GMB program defined below,

which uses the data sources from section 2.2, executes the integration of the data sources as

one single program. This program took approximately 3 minutes to run:

GMB <=

for g in genemap union

{(gene_name := g.g_gene_name, burdens :=

(for o in occurrences union

for s in clinical union

for e in expression union

for s in samples union

if (o.donorId = c.bcr_patient_uuid &&

s.bcr_patient_uuid = c.bcr_patient_uuid

&& e.ge_aliquot = s.bcr_aliquot_uuid) then

for t in o.transcript_consequences union

if (g.g_gene_id = t.gene_id) then

{(sid := o.donorId,

lbl := if (s.gleason_pattern_primary = 2)

then 0

else if (s.gleason_pattern_primary =

3) then 0

else if (s.gleason_pattern_primary = 4)

then 1

else if (s.gleason_pattern_primary = 5)

then 1

else -1,

burden := (e.ge_fpkm + 0.001) *

if (t.impact = "HIGH") then 0.80

else if (t.impact = "MODERATE") then

0.50

else if (t.impact = "LOW") then 0.30

else 0.01

)}

).sumBy({sid, lbl}, {burden})

)};

While the program below, was executed in 45 seconds:

107

mapExpression <=

for s in samples union

for e in expression union

if (s.bcr_aliquot_uuid = e.ge_aliquot) then

{(sid := s.bcr_patient_uuid, gene := e.ge_gene_id, fpkm

:= e.ge_fpkm)};

impactGMB <=

for g in genemap union

{(gene_name := g.g_gene_name, gene_id:= g.g_gene_id, burdens

:=

(for o in occurrences union

for s in clinical union

if (o.donorId = s.bcr_patient_uuid) then

for t in o.transcript_consequences union

if (g.g_gene_id = t.gene_id) then

{(sid := o.donorId,

lbl := if (s.gleason_pattern_primary = 2) then 0

else if (s.gleason_pattern_primary = 3) then 0

else if (s.gleason_pattern_primary = 4) then 1

else if (s.gleason_pattern_primary = 5) then 1

else -1,

burden := if (t.impact = "HIGH") then 0.80

else if (t.impact =

"MODERATE") then 0.50

else if (t.impact =

"LOW") then 0.30

else 0.01

)}

).sumBy({sid, lbl}, {burden})

)};

GMB <=

for g in impactGMB union

{(gene_name := g.gene_name, gene_id := g.gene_id, burdens :=

(for b in g.burdens union

for e in mapExpression union

if (b.sid = e.sid && g.gene_id = e.gene) then

{(sid := b.sid, lbl := b.lbl, burden :=

b.burden*e.fpkm)}).sumBy({sid,lbl}, {burden})

)}

While the two programs above result in exactly the same output, the execution time of the

first one is much longer than the second one because of the way we join the data sources.

108

In the first program, we simply join everything on the top level. In the second program, we

first join samples and gene expression, we then join genemap, occurrences and clinical

and then we execute the final sumBy function. From the above data sources mentioned,

gene expression is the largest. mapExpression outputs results only for gene expression

tuples that meet the join condition with samples and hence there is no need to iterate over

all tuples of gene expression. The execution time (compared to the first program) is further

reduced by the presence of the impactGMB since in the final program, only tuples with common

id’s from occurrences and clinical are used.

Appendix C Presence of Prostate Cancer Predic-

tion

For this experiment, we used a subset of the TCGA (See section 2.1) and selected the 6

most abundant cancer types, which were stomach, bladder, esophagus & liver, pancreas, and

prostate. The experiment was performed to predict the presence of prostate cancer in the

samples. The experimental setup for this experiment was the same as the ones described in

section 5.4.1. Initially, we had 57 000 features and ran the experiment with ANOVA and MI,

since RFE’s runtime was too long. We then performed the value filter, discussed in section

4.2. The filter filtered out any features with burden < 0.02, where 15 000 features survived.

We present the results in the table below:

Table 15: Binary classification - Prostate cancer presence prediction - value
filter

Method 57000 15000

ANOVA 79.1% 72.8%

RFE - % 84.0%

MI 80.9% 76.1%

We can see that the best performing model was RFE 15000 with an accuracy of 84.0%.

109

We then pushed the chi-square feature-selection based filter, in order to further investigate

how our models perform with decreasing number of features. We present the results in the

table below:

Table 16: Binary classification - Prostate cancer presence prediction - chi-
square feature-selection based filter

Method 5500 2000

ANOVA 80.2% 80.6%

RFE 87.8% 80.2 %

MI 78.7% 71.2%

We can see that indeed pushing the chi-square filter and hence reducing the feature space

improved the performance of the best performing model. RFE was the best performing

model, using 5500 features, outputting an accuracy of 87.8%.

Appendix D Gene Enrichment Analysis

Additional results from the gene enrichment analysis. Figure D.1 shows the biological pro-

cesses, cellular components, and molecular function categories for the 200 genes from the RFE

model from the binary classification task from section 5.3.3. Figure D.2 outputs the same

results but for 148 genes from RFE, excluding the genes that overlap with the output genes

of the ANOVA model from the same experiment.

110

Figure D.1: Represented biological processes, cellular components, and molecular func-
tion categories for 200 genes from RFE from the binary classification - Prostate cancer
severity task.

Figure D.2: Represented biological processes, cellular components, and molecular func-
tion categories for 148 genes identified from RFE only from the binary classification -
Prostate cancer severity task.

	Introduction
	Motivation
	Thesis Objectives
	Thesis Outline

	Background
	Multi-modal Biomedical Analyses
	Data Sources
	occurrences
	samples
	genemap
	clinical
	gene_expression

	Distributed Processing Platforms
	TraNCE
	TraNCE overview
	Architecture
	NRC
	Example TraNCE Program
	Shredded Compilation
	Pipeline Overview

	UDFs
	Feature Selection

	Extended TraNCE
	UDF Construct and Compilation
	Shredding UDFs
	External Types
	UDF Optimization Hints

	UDFs with Feature Selection Filters
	Feature-selection Based Filters Introduction
	Correlation Filter
	Chi-square Filter
	Filter Implementation

	Feature-selection Based Hints

	Experiments
	Experimental Setup
	Exploration
	Binary Classification: Prostate Cancer Severity
	Single-omics - Mutation Impact Burden
	Single-omics - Gene Expression
	Multi-omics - Integrated Impact and Gene Expression

	Multi-class Classification: Tumor Site Prediction
	Multi-class
	One-vs-rest

	Gene Enrichment Analysis
	Prostate severity with multi-omics
	One-vs-rest Tumor Site Prediction

	Discussion and Future Work
	Discussion
	Limitations and Future Work

	Conclusions
	Appendices
	Appendix Feature Selection Runtimes
	Appendix Optimizations for Multi-omics Queries
	Appendix Presence of Prostate Cancer Prediction
	Appendix Gene Enrichment Analysis

